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Abstract

Mathematics possesses not only truth, but supreme

beauty - a beauty cold and austere, like that of

sculpture, without appeal to any part of our weaker

nature ... capable of a stern perfection such as only

the greatest art can show.

Betrand Russell [37]

The aim of this project is to build up the theory of reflection groups for a

graduate of mathematics reader and to compute a number of results regarding

complex reflection groups.

Real reflection groups were first classified by Harold Coxeter in 1934 [16],

indeed, real reflection groups are often called finite Coxeter groups. The

theory of complex reflection groups followed in 1954 with the Shepherd-Todd

theorem on invariant theory of finite groups. Recently, the theory of complex

reflection groups has generated a great deal of research interest, and is central

to many modern developments in algebra.

This project begins with some preliminary results in linear algebra and group

theory, which are used throughout. Chapter 2 builds up the theory of roots

and root systems for real reflection groups and Chapter 3 contains the clas-

sification of real reflection groups. The complex reflection groups are split
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into three infinite families and 34 exceptional cases. In this project we prove

the classification of imprimitive complex reflection groups, which is found in

Chapter 4. Although we do not prove the primitive case, we discuss such

groups and reference where a proof can be found.

Chapter 5 then contains computational results regarding complex reflection

groups using the computer algebra program GAP. The project is concluded

in the final chapter by discussing modern developments in this field. The

provided references should be a good basis for the reader to develop their un-

derstanding of reflection groups further and to study them in greater depth.

The completion of this project has only been possible with the help of my

supervisor, Simon Goodwin. I wish to express my deepest thanks for his

valuable time and support.
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Chapter 1

Preliminaries

The human mind has never invented a labour-saving

machine equal to algebra.

Anon

1.1 Linear Algebra

First we introduce some basic notation and definitions from linear algebra.

As we will in Chapter 2, here we restrict our attention to the real numbers,

R.

Definition 1.1.1. A bilinear form on a vector space V is a form that is

linear in both parts, i.e. a function β : V × V −→ R such that

1. β(u+ u′, v + v′) = β(u, v) + β(u, v′) + β(u′, v) + β(u′, v′),

2. β(λu, v) = β(u, λv) = λ · β(u, v).

1



CHAPTER 1. PRELIMINARIES 2

A symmetric bilinear form satisfies

β(u, v) = β(v, u),

for all u, v ∈ V .

Definition 1.1.2. A Euclidean vector space is a set V over a field R, together

with two binary operations that satisfy the axioms of a vector space and has

an inner product . That is, a symmetric bilinear form:

(·, ·) : V × V −→ R,

satisfying the conditions for a symmetric bilinear form and, for all v ∈ V ,

(u, u) ≥ 0 where equality holds if and only if u = 0.

Example 1.1.3. If we let V = Rn and equip it with the usual dot product:

((x1, . . . , xn), (y1, . . . , yn)) =
n∑
i=1

xiyi = x1y1 + · · ·+ xnyn,

then V is a Euclidean vector space.

Definition 1.1.4. Let V be a Euclidean vector space, the length of a vector

α is ‖α‖ :=
√

(α, α).

Note that ‖α‖ = 0 if and only if α = 0. From here onwards we always let V

represent a Euclidean vector space. Central to our study of reflections and

reflection groups is that of a hyperplane.

Definition 1.1.5. A hyperplane in a vector space V is an n− 1 dimensional

subspace of V .
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Notationally we write Hα to represent the hyperplane orthogonal to a vector

α ∈ V . We are now in a position to define an orthogonal transformation,

and eventually the orthogonal group O(V ).

Definition 1.1.6. The set of linear transformations, S, from V to V which

satisfy:

(Sv, Sw) = (v, w) for all v, w ∈ V,

is denoted by O(V ). The members of O(V ) are called orthogonal transfor-

mations.

Recall that a matrix A is orthogonal if AT = A−1, where AT is the transpose

of the matrix.

Definition 1.1.7. Two vectors in a Euclidean vector space are orthonormal

if they are orthogonal and of unit length. A set of vectors is orthonormal if

all the vectors in the set are mutually orthonormal and an orthonormal basis

is an orthonormal set which forms a basis of the Euclidean vector space.

Example 1.1.8. The standard basis of R3 is an orthonormal basis. To see

this consider the standard basis of R3, {e1, e2, e3} where

e1 =

1

0

0

 , e2 =

0

1

0

 and e3 =

0

0

1

 .

Clearly (e1, e2) = (e1, e3) = (e2, e3) = 0 and ‖e1‖ = ‖e2‖ = ‖e3‖ = 1. Thus

{e1, e2, e3} is an orthonormal set. But since we already know that this is a

basis of R3 we have that {e1, e2, e3} is an orthonormal basis.

Lemma 1.1.9. Let S ∈ O(V ) and let A be the matrix that represents S with

respect to an orthonormal basis, then detA = ±1.
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Proof. Let I represent the identity matrix then, since the elements of O(V )

are orthogonal we get that ATA = I and thus,

1 = det I,

= det(ATA),

= (detAT )(detA),

= (detA)2.

Giving detA = ±1.

1.2 Group Theory

We recall here the definition a group, a subgroup and the criterion a set with

a binary operation is a subgroup.

Definition 1.2.1. A group is a set G with a binary operation, ·, such that:

1. For all a, b, c ∈ G the associativity law holds, i.e. a · (b · c) = (a · b) · c.

2. There exists an identity element, e ∈ G, i.e. for all a ∈ G, a ·e = e ·a =

a.

3. For each a ∈ G, there exists an inverse element b, i.e. a · b = b · a = e.

We usually omit the · when talking about multiplication of group elements,

that is, for g, h ∈ G we write gh to represent the multiplication g · h in the

group G.

Example 1.2.2. GL(V ), the set of all automorphisms (bijective linear trans-

formations V −→ V ) of a vector space V , with composition of functions as

the binary operation, is a group.
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Definition 1.2.3. A nonempty subset H, of a group G, which is itself a

group under the binary operation of G, is called a subgroup of G. We write

H ≤ G.

Lemma 1.2.4. Let H be a non-empty subset of a group G. Then H is a

subgroup of G if and only if gh−1 ∈ H for all g, h ∈ H.

We do not give a proof here, it is fairly trivial, and can be found in any good

introduction to group theory book. Our intuition of O(V ), along with matrix

multiplication, should be that it is a group, namely a subgroup of GL(V ).

Proposition 1.2.5. O(V ) is a subgroup of GL(V ).

Proof. We can equivalently define the orthogonal group as O(V ) := {A ∈
GL(V ) |ATA = AAT = I, where I is the identity matrix} and can prove it

is a subgroup by using Theorem 1.2.4.

(AB)T (AB) = (BTAT )(AB) = BTATAB = BT IB = BTB = I,

thus O(V ) ≤ GL(V ).

Definition 1.2.6. For a group G and a set X we define a group action of G

on X to be a function:

G×X −→ X

(g, x) 7−→ g · x

Satisfying:

1. (gh) · x = g · (h · x) for all g, h ∈ G and x ∈ X,

2. e · x = x where e is the identity in G, for all x ∈ X.
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Definition 1.2.7. Given a group G acting on a set X (i.e. we have a group

action as defined above) the orbit of an element x ∈ X is the set of elements

which x is moved to by G, i.e. it is the set,

Gx = {g · x | g ∈ G}.

We call the group action transitive if the orbit of an element x ∈ X is the

whole set, Gx = X.



Chapter 2

Real Reflection Groups

Thou in thy lake dost see

Thyself.

J. M. Legaré [33, pg. 10]

2.1 Reflections

Before studying complex reflection groups we first consider real reflection

groups and their classification. In this chapter we work towards the presen-

tation of finite reflection groups.

Definition 2.1.1. For 0 6= α ∈ V = Rn the reflection about α is the unique

linear transformation mapping α to its negative and fixing pointwise the

hyperplane Hα. That is the hyperplane orthogonal to α.

Remark. Each reflection sα uniquely determines a reflecting hyperplane Hα,

and vice versa.

7



CHAPTER 2. REAL REFLECTION GROUPS 8

Figure 2.1: The reflection of x along α in V = R2.

In Figure 2.1 we would say that sα(x) (which we will often just write as sαx)

is reflected through the hyperplane Hα, or along α.

Clearly, for any reflection, s2
α = 1 (reflecting the reflection will go back to

where we started) and there is a simple formula for sαx with x ∈ V .

Theorem 2.1.2. Let sαx be a reflection of x along α, fixing the hyperplane

Hα, then:

sαx = x− 2(x, α)α

(α, α)
.

Proof. For this proof we consider α as a unit vector,

α̂ =
α√

(α, α)
,

=
α

‖α‖
.

Then (x, α̂) = ‖x‖ cos(θ), (which is labelled in Figure 2.1, where θ is the
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angle between the vectors α and x) so:

sαx = x− 2‖x‖ cos(θ)α̂,

= x− 2 (x, α̂) α̂,

= x− 2(x, α)

‖α‖
· α

‖α‖
,

= x− 2(x, α)α

(α, α)
.

It is easy to see that sα ∈ O(V ), we can convince ourselves geometrically or

using the above formula and the inner product on V to show that:

(
x− 2(α, x)α

(α, α)
, y − 2(α, y)α

(α, α)

)
= (x, y)− 2(α, x)(α, y)

(α, α)
− 2(α, y)(x, α)

(α, α)

+
4(α, x)(α, y)(α, α)

(α, α)2
,

= (x, y).

So, sα ∈ O(V ). Using the fact that s2
α = 1, note that sα has order 2 in O(V ).

Definition 2.1.3. A finite subgroup of O(V ) generated by reflections is

called a real (finite) reflection group.

We denote by W a finite reflection group, acting on the Euclidean space V .

W is used to denote finite reflection groups since the majority of finite re-

flection groups are actually ‘Weyl groups’ [30, pg. 6]. From here onwards W

is used exclusively to represent some finite reflection group.

Example 2.1.4. The dihedral group, D2n, is the set of orthogonal transfor-
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mations which preserve a regular n-sided polygon centred at the origin. The

group has order 2n and is of type I2(n), it consists of n rotations (rotating

the shape through 2π
n

multiple times) and n reflections. However any rotation

can in fact be generated by the product of two reflections, and D2n is a finite

reflection group.

Figure 2.2: D8, example of finite reflection group.

Example 2.1.5. The symmetric group, Sym(n), is the group of permuta-

tions on n letters. The group has order n! and is of type An−1. We can

consider the group as a subgroup of O(Rn) and a permutation acts on Rn

by permuting the standard basis vectors of R (the set {e1, . . . , en}). The

transposition (i, j) sends ei − ej to its negative and fixes the orthogonal

complement. Since we know that the symmetric group is generated by trans-

positions (see [2, pg. 16]) we have that the symmetric group is a reflection

group.
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Theorem 2.1.6. If T ∈ O(V ) and 0 6= α ∈ V , then

TsαT
−1 = sTα.

Proof. Consider x ∈ V . We note that since (x, α) = (Tx, Tα), x lies in Hα

if and only if Tx lies in HTα. Then, whenever x lies in Hα, we get:

(TsαT
−1)(Tx) = Tsαx,

= Tx.

Thus TsαT
−1 fixes HTα pointwise and since TsαT

−1 sends Tα to its negative:

(TsαT
−1)(Tα) = Tsαα,

= −Tα.

We see that TsαT
−1 = sTα.

Given a reflection sα ∈ W this determines a hyperplane Hα, as we have

already stated, and a line Lα = Rα which is orthogonal to the hyperplane.

Theorem 2.1.6 implies that W permutes the set of all such lines.

2.2 Roots

2.2.1 Root Systems

The study of finite reflection groups is based around the theory of root sys-

tems and many recent developments for complex reflection groups have been

to establish similar results for such groups. We will explore these develop-

ments in Chapters 4 and 6, here we build up the basic definitions and results
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for real reflection groups.

Definition 2.2.1. Consider a finite set Φ of nonzero vectors in V that satisfy:

1. Φ ∩ Rα = {α,−α} ∀α ∈ Φ,

2. sαΦ = Φ ∀α ∈ Φ.

Then let W be the group generated by all reflections sα such that α ∈ Φ. We

call Φ a root system with associated reflection group W and the elements of

Φ, roots.

The associated reflection group W is finite since each element of W fixes

pointwise the orthogonal complement of the subspace spanned by Φ, as each

sα for α ∈ Φ does. Thus, only the identity can fix all elements of Φ and the

natural homomorphism of W into the symmetric group on Φ has a trivial

kernel, hence W must be finite. Our choice of root system, Φ, with corre-

sponding reflections which generate a particular reflection group need not

be unique, and indeed any finite reflection group can be generated by reflec-

tions corresponding to vectors in some Φ. The aim of Chapters 2 and 3 of

this project is to arrive at the classification of finite reflection groups, and

since we have that all such groups are generated by Φ one would be forgiven

for thinking that perhaps we are done (or at least mostly). However, the

size of Φ could be very large in comparison to the dimension of the vector

space. For example if W = D2n (the dihedral group) then we could have

|Φ| = |W | = 2n but dimV = 2. So it seems this may not the best way of

classifying the groups, in fact we want to find a smaller, linearly independent,

set from which Φ can be constructed.

This is what we later call a simple system.
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2.2.2 Positive Systems

As seen above a root system can be very large and so we now look for useful

subsets of these.

Definition 2.2.2. A total ordering of a real vector space V is a transitive

relation on V such that:

1. For each u, v ∈ V exactly one of the following hold:

• u < v,

• u = v,

• v < u.

2. For all u, v, w ∈ V if u < v then u+ w < v + w.

3. If u < v and 0 6= λ ∈ R then λu < λv if λ > 0 and λv < λu if λ < 0.

Given a total ordering of V , we say that some v ∈ V is positive if v > 0 in

the ordering. The set of positive roots, Π ⊂ Φ, is closed, since, the sum of

positive vectors is positive and scalar multiplication by a positive real number

will still give something positive. The collection of all of these positive roots

are combined to form a positive system, which clearly must exist.

Definition 2.2.3. Given a root system Φ, a subset, Π ⊂ Φ, is called a

positive system if it consists of all roots which are positive with respect to

some total ordering of V .

We know that roots come in pairs, say {α,−α}, and thus we can define a

negative system in much the same way as Definition 2.2.3. We call −Π a

negative system, and clearly:

Φ = −Π t Π.
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Where t means the disjoint union.

2.2.3 Simple Systems

Definition 2.2.4. A simple system, ∆, is a linearly independent set of roots

such that each element of the root system, Φ, is a non-negative or non-

positive linear combination of elements of ∆. We call the elements of ∆,

simple roots .

In other words, for each α ∈ Φ, we can construct α as a linear combination

of vectors in ∆ with coefficients all of the same sign. Unlike positive systems,

it is not obvious that simple systems must exist. However we are not in a

position to prove this yet, we will in Section 2.2.5, so until then let ∆ =

{α ∈ Π |α cannot be wrriten as β + γ for β, γ ∈ Π} which must exist, and

we later show that this is indeed a base of the root system Φ.

Example 2.2.5. We once again consider D8, the dihedral group of order 8,

but highlight a positive and simple system. The positive system, Π, is made

up by the bold lines (Π = {α, β, γ, δ}) and the corresponding simple system

is denoted by the bold dotted and dashed lines (∆ = {α, β}).

It is easy to check that the reflections corresponding to the roots α and β do

indeed generate D8. To see this consider the vectors in the positive system

as unit vectors, around the origin, i.e.

α = (1, 0), β = (−1, 1), γ = (1, 1) and δ = (0, 1).
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Figure 2.3: D8, example of a positive and simple system.

Now note that,

α + β = (1, 0) + (−1, 1),

= (0, 1),

= δ.

and

2α + β = 2(1, 0) + (−1, 1),

= (1, 1),

= γ.

In particular we can express γ and δ in terms of α and β with non-negative

positive coefficients, and from this we can clearly also generate the corre-
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sponding negative system (multiplication by −1). Thus α and β make up

the simple system.

Example 2.2.6. As in Example 2.1.5 we consider the symmetric group. This

has root system Φ = {ei − ej | i 6= j} since clearly condition (1) of Definition

2.2.1 is met, as is the second because sei−ej is the permutation of the standard

basis of Rn swapping the elements ei and ej and sei−ejα =
α−(ei−ej ,α)(ei−ej)

2

for all α ∈ Φ. There are multiple choices for the positive system, for example

we may choose Π = {ei − ej | i < j} which has corresponding simple system

∆ = {e1 − e2, e2 − e3, . . . , en−1 − en}. Note that |∆| = n− 1.

2.2.4 Angle Between Simple Roots

Note that in Example 2.2.5 and 2.2.6 the angles between the roots in the

simple system are not acute, this is not an accident and this is the motivation

of this subsection. We work towards the proof of Theorem 2.2.7.

Theorem 2.2.7. Given a finite reflection group, W , with corresponding root

system Φ, positive system Π and simple system ∆, then for all α, β ∈ ∆ such

that α 6= β:

(α, β) ≤ 0,

i.e. the angle between two distinct roots in a simple system is not acute.

Before we can prove this we first require some more results. From here on

we always let Φ be the corresponding root system to a finite reflection group

W , with positive system Π and simple system ∆.

Definition 2.2.8. Let Π = {α1, α2, . . . , αn}, a vector v ∈ V is called vector
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positive provided we can write

v =
n∑
i=1

λiαi,

with all λi ≥ 0. A vector u ∈ V is vector negative if and only if −u is vector

positive.

Proposition 2.2.9. Let ∆ = {α1, . . . , αn} be a simple system for a finite

reflection group W and let αi, αj ∈ ∆ such that αi 6= αj and let x, y ∈ R such

that x, y > 0 then the vector

xαi − yαj,

is not vector positive nor vector negative.

Proof. Let αi, αj, x, y be as above and for a contradiction assume that xαi−
yαj is vector positive. Therefore,

xαi − yαj =

 n∑
p=1
p 6=i

xpαp

+ zαi,

with xp ≥ 0, not all 0 and z ≥ 0. So we have two cases to consider:

Case 1: z < x
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Then,

xαi − zαi =

 n∑
p=1
p6=i

xpαp

+ yαj,

(x− z)αi =

 n∑
p=1
p6=i

xpαp

+ yαj,

αi =
1

x− z

 n∑
p=1
p6=i

xpαp

+ yαj.

Which means that αi is a nonnegative linear combination of ∆\{αi} which

contradicts the minimality of ∆.

Case 2: z ≥ x

In which case:

−yαj =

 n∑
p=1
p 6=i

xpαp

+ zαi − xαi,

=

 n∑
p=1
p 6=i

xpαp

+ (z − x)αi.
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Now, since z − x ≥ 0 and
∑n

p=1
p 6=i

xpαp ≥ 0 clearly,

 n∑
p=1
p 6=i

xpαp

+ (z − x)αi ≥ 0,

and as y > 0 we have that −yαj ≤ 0, concluding that,

0 ≥

 n∑
p=1
p6=i

xpαp

+ (z − x)αi ≥ 0,

thus,  n∑
p=1
p 6=i

xpαp

+ (z − x)αi = 0.

Which is a contradiction, as a nonnegative linear combination of elements of

∆ with at least one not equal to 0 cannot be equal to 0.

The above two cases, and contradictions, imply that xαi − yαj can not be

vector positive.

Now if we assume, xαi − yαj is vector negative, then:

−(xαi − yαj) = yαj − xαi,

is positive and we get a contradiction as above. Thus xαi − yαj is neither

vector positive nor vector negative.

Proposition 2.2.10. Let α, β ∈ ∆ such that α 6= β, then,

sαβ ∈ Π.
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Proof. Clearly sαβ ∈ Φ, where Φ is the root system for which ∆ ⊂ Φ so sαβ

is either positive or negative but

sαβ = β − 2(β, α)α,

with one positive coefficient. By Proposition 2.2.9 both coefficients must be

nonnegative so sαβ ∈ Π.

Proposition 2.2.11. Consider a finite reflection group W with simple sys-

tem ∆ contained in the positive system Π. If α ∈ ∆ and β ∈ Π such that

α 6= β then sαβ ∈ Π.

Remark. Proposition 2.2.11 implies that sα(Π\{α}) = Π\{α}.

Proof of Proposition 2.2.11. Let β ∈ Π and first assume α ∈ ∆, then sαβ ∈
Π by Proposition 2.2.10.

If α 6∈ ∆ then α =
∑

δ∈∆ cδδ and at least two cδ are positive. So consider

γ ∈ ∆ such that α 6= γ and let cγ > 0. Thus,

sαβ =
∑
δ∈∆

cδsαδ,

= cγγ +
∑
δ∈∆
δ 6=γ

cδδ − 2

(∑
δ∈∆

cδ(δ, α)

)
α.

Finally since sαβ ∈ Φ = −Π t Π it must either be positive or negative. We

know sαβ has at least one positive coefficient γ and thus all the coefficients

are nonnegative, hence sαβ ∈ Π.

We are now in a position to prove Theorem 2.2.7.

Proof of Theorem 2.2.7. If we consider the reflection of α along β, sβα, then
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(via Theorem 2.1.2) we get,

sβα = α− 2(α, β)

(β, β)
β.

If (α, β) > 0 then sβα is neither positive nor negative (using x = 1 and

y = 2(α,β)
(β,β)

in Proposition 2.2.9). A contradiction, since clearly sβα ∈ Φ and

Φ = −Π t Π so sβα ∈ −Π t Π and so must be either positive or negative.

Thus (α, β) ≤ 0 as required.

2.2.5 Existence of Simple Systems

Theorem 2.2.7 leaves us in a position to consider the most important result in

this section on roots, that is, that our ∆ = {α ∈ Π |α cannot be wrriten as β+

γ for β, γ ∈ Π} is indeed a base, i.e the existence of simple systems.

Theorem 2.2.12. For every positive system Π in Φ, there exists a unique

simple system ∆. In particular, simple systems exist.

Proof.

Existence:

Consider a minimum subset ∆ of a positive system Π (that is ∆ ⊂ Π) such

that for all α ∈ Π, α =
∑

δ∈∆ aδδ and aδ ≥ 0. It is clear that such ∆ exist,

we now show this is linearly independent.

If we assume ∆ is linearly dependent then
∑

δ∈∆ aδδ = 0 with not all aδ = 0

so we can rewrite this as, ∑
bββ =

∑
cγγ,
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with bβ, cγ > 0 and β 6= γ. So
∑
bββ =

∑
cγγ > 0 then via the definition of

the inner product:

0 ≤
(∑

bββ,
∑

cγγ
)
,

but by Theorem 2.2.7, (∑
bββ,

∑
cγγ
)
≤ 0,

So combining the above we get that(∑
bββ,

∑
cγγ
)

= 0.

Contradicting that
∑
bββ =

∑
cγγ > 0, thus ∆ is linearly independent.

Uniqueness:

If ∆ ⊂ Π then ∆ is the set of all roots α ∈ Π such that α can not be written

as a linear combination with positive coefficients of elements of Π. Thus ∆

is unique in Π.

This is a nice result, and exactly the kind of thing we want, given a positive

system we can find a unique simple system. It is also easy to show that any

simple system is contained in a unique positive system. Which we state in

the following lemma.

Lemma 2.2.13. Given a simple system ∆, we can find a unique positive

system which contains the simple system.

Proof.

Existence:

Take a simple system ∆, which, by definition, is a linearly independent set.

Then extend the set to an ordered basis of V and we can take Π to be the
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set of positive elements of Φ with respect to the corresponding lexicographic

ordering, thus ∆ ⊂ Π.

Uniqueness:

Suppose ∆ is a simple system which is contained in a positive system Π, i.e.

∆ ⊂ Π. Then clearly all roots which are nonnegative linear combinations of

elements of ∆ must also be in Π, and we can characterize Π uniquely as the

set of all such roots.

We see from Theorem 2.2.12 and Lemma 2.2.13 that the cardinality of any

simple system does not depend on Φ and this is how we define the rank of

the group.

Definition 2.2.14. The rank of W is the cardinality of the associated simple

system, in particular, rank of W = rk(W ) = |∆|.

Example 2.2.15.

D2n (the dihedral group) has rank 2 (the converse is also true i.e. if a root

system Φ has rank 2 then it is a dihedral group). The proof of this is similar

to the argument given to show that D8 has a simple system containing 2

elements as in Example 2.2.5.

Sn = Sym(n) (the symmetric group) has rank n− 1. Again this is clear from

the given simple system in Example 2.2.6.

Lemma 2.2.16. Any two positive systems, Π, in a root system Φ, are con-

jugate under W .

Proof. Let Π and Π′ be positive systems, so each contain half of the roots.

We prove this result by induction on r := Card(Π ∩ −Π′).
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For r = 0, Π = Π′ and we are done.

Now consider r ≥ 1, clearly the corresponding simple system ∆ of Π cannot

be completely contained in Π′ so we consider an element, namely α ∈ ∆ such

that α ∈ −Π′. Proposition 2.2.11 then says that Card(sαΠ ∩ −Π′) = r − 1

and so induction implied to sαΠ and Π′ gives us an element w ∈ W in which

w(sαΠ) = Π′, and so Π and Π′ are conjugate.

2.3 Presentation of Reflection Groups

The aim of this section is to get a presentation of W as an abstract group

and we state the main theorem that we will work towards.

Theorem 2.3.1. For a fixed simple system ∆ in Φ, W is generated by the set

S := {sα |α ∈ ∆}, subject only to the relation, (sαsβ)mαβ = 1 for α, β ∈ ∆

and where mαβ denotes the order of sαsβ in W .

The order of sαsβ is equal to 1 if α = β and is an element of the set {2, 3, . . .}
otherwise. We can write Theorem 2.3.1 in a slightly easier way using the

definition of a simple reflection.

Definition 2.3.2. A simple reflection is a reflection sα for which α ∈ ∆.

Giving rise to an alternative form of Theorem 2.3.1.

Theorem 2.3.1: Fix a simple system ∆ = {α1, . . . , αn} with simple reflec-

tions sαi . For simplicity we let si = sαi and mij = mαiαj . Then W has the

following presentation:

W = 〈s1, s2, . . . , sn | (sisj)mij = 1〉.
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Indeed any such group that has a presentation of this form is called a Coxeter

group.

It is from this theorem that we get the definition of a Coxeter system, it is

defined as follows.

Definition 2.3.3. Given a finite reflection group W with a set of generators

S := {sα |α ∈ ∆} such that (sαsβ)mαβ = 1, (W,S) is called a Coxeter system.

Example 2.3.4. The dihedral group D8 is an example of a Coxeter group,

with group presentation:

D8 = 〈s1, s2 | (s1)2 = (s2)2 = (s1s2)4 = 1〉.

2.3.1 Finite Reflection Groups are Generated by Sim-

ple Reflections

Before we can prove the presentation theorem we first must show that you can

actually generate W with simple reflections. This requires another definition.

Definition 2.3.5. If α ∈ Φ then we know you can write α in terms of

elements of the corresponding simple system ∆. Say, α =
∑

δ∈∆ cδδ, we call∑
δ∈∆ cδ the height of α relative to ∆.

In particular ht(α) =
∑

δ∈∆ cδ.

Theorem 2.3.6. Given a finite reflection group W with a corresponding

fixed simple system ∆, then W is generated by simple reflections, that is

reflections sα such that α ∈ ∆.

Proof. Fix a simple system ∆ and let W ′ be the group generated by ∆, we

want to show W ′ = W .
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From Lemma 2.2.13 we know that ∆ is uniquely contained in some positive

system Π. Now if β ∈ Π consider W ′β∩Π which is a nonempty set of positive

roots and choose γ ∈ (W ′β ∩ Π) of minimum height.

Claim: γ ∈ ∆.

Proof of claim. Write γ as γ =
∑

α∈∆ cαα and note that 0 < (γ, γ) =∑
α∈∆ cα(γ, α) which implies (γ, α) > 0 for some α ∈ ∆. Now, if γ = α we

are done, so say γ 6= α and consider sαγ.

We obtain sαγ from γ by subtracting positive multiples of α and thus ht(sαγ) <

ht(γ) contradicting our choice of γ (we choose γ to have minimum height).

Thus γ = α, so γ ∈ ∆.

Claim: W ′∆ = Φ.

Proof of claim. We know from above that any W ′-orbit of a positive root

meets the simple system, thus Π ⊆ W ′∆. Whereas if β is negative then

−β ∈ Π is conjugate by some w ∈ W ′ to α ∈ ∆. Then −β = wα which

implies that β = (wsα)α, with wsα ∈ W ′. So −Π ⊆ W ′∆, in particular

W ′∆ = Φ.

Claim: W ′ = W .

Proof of claim. Consider a generator sβ of W . We can write β = wα for

some w ∈ W ′, α ∈ ∆ via the above claim. Then Theorem 2.1.6 implies that

sβ = wsαw
−1 ∈ W ′.

Thus, W = W ′.

So W is generated by simple reflections.
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2.3.2 The Length Function

Definition 2.3.7. The length, l(w), of w, relative to some simple system ∆,

is the smallest l such that w = sα1 · · · sαl where sαi are simple reflections.

The length of an element w ∈ W is equal to 1 (l(w) = 1) if and only if

w = sα. Also l(w) = l (w−1) since if w = sα1 · · · sαl then w−1 = sαl · · · sα1

which implies l (w−1) ≤ l(w) and vice versa so l(w) = l (w−1).

Definition 2.3.8. The number of positive roots sent to negative roots by

w =: n(w) := Card(Π ∩ w−1(−Π)).

The above function is sometimes called the “n function”.

Lemma 2.3.9. Let α ∈ ∆ and w ∈ W then:

1. If wα ∈ Π then n(wsα) = n(w) + 1.

2. If wα ∈ −Π then n(wsα) = n(w)− 1.

Proof. Let Π(w) := Π ∩ w−1(−Π), so that n(w) = Card Π(w). If wα ∈ Π

then via Proposition 2.2.11 Π(wsα) is the disjoint union of sαΠ(w) and {α}
and thus n(wsα) = n(w) + 1.

If wα ∈ −Π then the same argument gives sαΠ(wsα) = Π(w)\{α} but α is

not in Π(w) thus n(wsα) = n(w)− 1

Lemma 2.3.10. With n(w) and l(w) defined as above,

n(w) = l(w).

Proof. Let w = s1 · · · sr then n(w) ≤ l(w) since we can get to the expression

for w in r steps, and so the the number of positive roots sent to negative
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roots can go up by at most 1 at each step and thus n(w) ≤ l(w).

Now assume n(w) < l(w) = r so we can write w = sα1 · · · sαr . Since

n(w) < r if we repeatedly apply Lemma 2.3.9 we find a j ≤ r such that

(sα1 · · · sαj−1
)αj < 0, but as αj > 0 there exists i < j such that sαi(sαi+1

· · ·
sαj−1

)αj < 0 and (sαi+1
· · · sαj−1

)αj > 0. Then Proposition 2.2.11 implies

αi = (sαi+1
· · · sαj−1

)αj and Theorem 2.1.6 gives,

(sαi+1
· · · sαj−1

)sαj(sαj−1
· · · sαi+1

) = sαi ,

and thus we can write w = sα1 · · · ŝαi · · · ˆsαj · · · sαr where ŝαi means that sαi is

omitted, so l(w) = r−2 which contradicts that l(w) = r. Thus n(w) ≥ l(w).

Hence l(w) = n(w).

Remark. So as l(w) = n(w) we get from Lemma 2.3.9 that l(wsα) = l(w)±1

depending on whether wα ∈ Π or −Π.

Definition 2.3.11. If W 3 w = sα1 · · · sαl then we call each wj such that

wj = sα1 · · · sαj with 0 ≤ j ≤ k, a partial element of w.

If j = 0 then wj = w0 has no factors and so we take by convention that

w0 = 1.

Notation. If sα and sβ are fixed simple reflections then by (sαsβ · · · )k we

denote the element sαsβsαsβ · · · having a total of k factors (starting with

sα). Similarly (· · · sαsβ)k denotes the element · · · sαsβ having a total of k

factors (ending with sβ).

Example 2.3.12. (sαsβ · · · )5 = sαsβsαsβsα.

(· · · sαsβ)5 = sβsαsβsαsβ.
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Proposition 2.3.13. If sα and sβ are simple reflections in W and 1 ≤ p ≤
mαβ then

(· · · sαsβ)p−1α ∈ Π.

Proof. By the definition of a simple reflection we have α, β ∈ ∆. If α = β

then mαβ = 1 = p and so the result is trivial.

So let α 6= β and assume the result is false.

Take the smallest value of p for which (· · · sαsβ)p−1α ∈ −Π. From the above

we know p > 1 and we consider two cases:

Case 1: p is even.

In which case

(· · · sαsβ)p−1α = (sβ · · · sαsβ)p−1α,

= sβ(· · · sαsβ)p−2α ∈ −Π,

and (· · · sαsβ)p−2α ∈ Π by the minimality of p. Then via Proposition 2.2.11

(· · · sαsβ)p−2α = β.

Therefore sβ = (· · · sαsβ)p−2sα(· · · sαsβ)−1
p−2 we get that sβ(· · · sαsβ)p−2 =

(· · · sαsβ)p−2sα which is equivalent to (sβ · · · sαsβ)p−1 = (sα · · · sβsα)p−1. But

then we have that (sαsβ · · · )2p−2 = (sαsβ)p−1 = 1.

Contradicting that sαsβ has order mαβ.

Case 2: p is odd.

The proof for p being odd is analogous to the case for even p.

Proposition 2.3.14. Let ∆ be a simple system with simple reflections S =

{s1, . . . , sn}. If w ∈ W , α and β are fixed and l(wsα) = l(wsβ) = l(w) − 1,
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then

l(w(· · · sαsβ)p) = l(w)− p,

if 0 ≤ p ≤ mαβ.

Proof. This is proved by induction on p.

If p = 0 or p = 1 the result is trivial.

Suppose p ≥ 2 and

l(w(· · · sαsβ)p−1) = l(w)− (p− 1), if 0 ≤ p ≤ mαβ,

holds. By Lemmas 2.3.9 and 2.3.10 we know that wα and wβ are in −Π and

by Proposition 2.3.13 the root (· · · sαsβ)p−1α is positive, and so it is of the

form aα + bβ with a, b ≥ 0 and not both zero. So

w(· · · sαsβ)p−1α = w(aα + bβ),

= awα + bwβ ∈ −Π,

and so

l(w(· · · sβsα)p) = l(w(· · · sαsβ)p−1sα),

= l(w(· · · sαsβ)p−1)− 1,

= l(w)− (p− 1)− 1,

= l(w)− p,

again by Lemmas 2.3.9 and 2.3.10, Proposition 2.3.13 and the induction

hypothesis.

Similarly l(w(· · · sαsβ)p) = l(w)− p.
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2.3.3 Proof of the Presentation of Reflection Groups

Now using Proposition 2.3.14 we can prove Theorem 2.3.1.

Proof of Theorem 2.3.1. Let W 3 w = sα1 · · · sαk where sαi are simple reflec-

tions (for ease of notation in this proof we equivalently write w = s1 · · · sk).
Suppose that u is the maximum length of any partial element of W . Then

we can write w in another way, letting j = i+ 1,

w = s1 · · · sk,

= s1 · · · si−1sisjsj+1 · · · sk,

= w1sisjw2,

where l(w1si) = u and every partial element of w1 has length less than u. Let

m = mij and w′ = w1(sjsi · · · )2m−2w2. Then note that w = w′, as elements

of the group W and, with the exception of w1si, all partial elements of w,

coincide with the partial elements of w′. In place of w1si, w
′ has the following

partial elements:

w1sj, wisjsi, . . . , w1(sjsi · · · )2m−3.

Now let v = w1si and since s2
i = 1, we see that the above partial elements

of w′ coincide with the elements v(sisj · · · )p for 2 ≤ p ≤ 2m − 2. This is

because,

v(sisj · · · )p = w1si(sisj · · · )p,

= w1s
2
i (sjsi · · · )p−1,

= w1(sjsi · · · )p−1.
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Now as l(v) = u and thus l(v) is maximal we get,

l(vsi) = l(vsj) = l(v)− 1.

If 2 ≤ p ≤ m then l(v(sisj · · · )p) < u by Proposition 2.3.14.

If m < p < 2m − 2 then rearranging gives 2 ≤ 2m − p < m and again by

Proposition 2.3.14,

l(v(sisj · · · )p) = l(v(sjsi · · · )2m−p) < u.

So now by applying (sisj)
mαβ we have replaced w by w′ all whose partial

elements have length less than or equal to u and having one fewer partial

element of length equal to u.

We now repeat the above procedure until we arrive at 1 = 1, which we must

get since we are dealing with finite sets, and we are done.



Chapter 3

Classification of Real Reflection

Groups

Modern algebra does not seem quite so terrifying

when expressed in these geometrical terms!

G. de B. Robinson [20, pg. 94]

3.1 Coxeter Graph

Theorem 2.3.1 and Lemma 2.2.16 imply that a finite reflection group W is

determined, up to isomorphism, by the set of integers mαβ with α, β ∈ ∆. We

can express this information in terms of a graph, namely the Coxeter graph

of W , and the aim of this chapter is to classify all possible finite reflection

groups in terms of their Coxeter graph.

Definition 3.1.1. A graph Γ, the Coxeter graph of W , has its vertex set in

one-to-one correspondence with ∆ = {α1, . . . , αn} and has an edge between

33
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a pair of vertices whenever mαiαj ≥ 3 (for simplicity we let mij = mαiαj).

We label such an edge with mij.

If a pair of vertices are not connected then this means mij = 2, and by

definition mii = 1.

Example 3.1.2. If we take W = D8, then we know that D8 has two roots in

its simple system, from Examples 2.1.4 and 2.2.5, say α and β, and mαβ = 4.

So it has the following Coxeter graph.

Figure 3.1: Coxeter Graph of D8.

A Coxeter graph determines W up to isomorphism and we now reserve Γ

to represent such a graph. Lemma 2.2.16 says that positive systems are

conjugate and since each positive system contains a unique simple system

(Theorem 2.2.12), we have that simple systems are conjugate and thus the

graph does not depend on the choice of ∆.

Definition 3.1.3. Given any Coxeter graph Γ, we define a subgraph, Γ′, of

Γ by either removing an edge of order 3 and merging the respective vertices

or by lowering the order of any edger greater than 3.

We can apply the above defined process recursively to Coxeter graphs to get

a series of different, and smaller, subgraphs from the same Γ.

Example 3.1.4. The graphs in Figure 3.2 are examples of a graph and a

subgraph.

Definition 3.1.5. We say the Coxeter system (W,S), as defined in Defini-

tion 2.3.3, is irreducible if the Coxeter graph Γ is connected.
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Figure 3.2: Γ′ is a subgraph of Γ

We call S, the set of simple reflections of W , irreducible in this case.

Before we proceed with classifying the finite reflection groups we argue that

we need only consider the connected Coxeter graphs.

Theorem 3.1.6. Let (W,S) have a Coxeter graph Γ which contains con-

nected components Γ1,Γ2, . . . ,Γr where S1, . . . , Sr are the corresponding sub-

sets of S. Then W = WS1 ×WS2 × · · · ×WSr where the WSi are parabolic

subgroups (subgroups of W generated by all the simple reflection from Si) and

each (WSi , Si) is irreducible.

Proof. We prove this by induction on r.

If r = 1 then Γ has only one connected component, i.e. Γ is connected, thus

by our definition (W,S) is irreducible.

Now assume r ≥ 2 and the result holds for r − 1.

Elements of Si commute with elements of Sj (for i 6= j) and thus the parabolic

subgroups are normal in W , i.e. WSi / W for i = 1, . . . , r. So S ⊆ WS1 ×
WS2 × · · · ×WSr and so this must be all of W . By induction WS\Si is the

direct product of WSj and WSi ∩WS\Si = {e}, where e is the identity of the

group. So the product is a direct product and we are done.

Definition 3.1.7. A vertex in a Coxeter graph Γ is a branch point if it has

degree greater than or equal to 3. A Coxeter graph is a chain if it is a tree
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(graph with no cycles) and has no branch points.

Example 3.1.8. Figure 3.3 is an example of a graph with a branch point,

and a graph which is a chain.

(a) η is a branch point. (b) The above graph is a chain.

Figure 3.3: Example of a graph with a branch point and which is a chain.

Now for each Coxeter graph, Γ, we can associate with it a bilinear form β,

we also use the fact that bilinear forms have a matrix representation.

3.2 Bilinear Form of Coxeter Graph

Definition 3.2.1. Let the underlying Euclidean vector space, V , have basis,

{e1, e2, . . . , en} then we define a symmetric bilinear form in the following way.

To each Coxeter graph Γ, which has a vertex set S, where ∆ = {α1, . . . , αn},
i.e. |S| = n, let:

β : V × V −→ R

(ei, ej) 7−→ − cos

(
π

mij

)
where mij = mαiαj .
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We let q(x) = β(x, x) and restrict q(x) to when it is positive definite (i.e.

q(x) > 0). Also let qij = β(ei, ej) (so q11 = β(e1, e1) = 1) and define

β(x, y) =
∑
i,j

qijxiyj,

for x, y ∈ V .

Definition 3.2.2. Now, with the bilinear form defined as above we can

arrive at its n× n matrix representation, A, by setting:

ai,j = qij = B(ei, ej).

The matrix A is clearly symmetric due to the symmetric condition on the

bilinear form. We refer to this matrix as the associated matrix to the Coxeter

graph.

Although we have that ai,j = qij, we use both throughout this chapter, the

former when referring to the associated matrix and the latter for the Coxeter

graphs bilinear form. Hopefully this will make it clear which associated form

we refer to.

Example 3.2.3. We find the associated matrix of the Coxeter graph given

in Figure 3.4.

Reading from the graph we find the orders of the roots:

mαα = 1, mαβ = 4, mαγ = 3, mβα = 4, mββ = 1,

mβγ = 7, mγα = 3, mγβ = 7, mγγ = 1.
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Figure 3.4: Example Coxeter graph

Then the associated matrix is:

A =


1 − 1√

2
−1

2

− 1√
2

1 − cos
(
π
7

)
−1

2
− cos

(
π
7

)
1

 .

Definition 3.2.4. Given a Coxeter graph Γ with associated n×n symmetric

matrix A and x ∈ Rn, we call A positive definite if xTAx > 0 for all x 6= 0

and positive semidefinite if xTAx ≥ 0 for all x 6= 0.

Similarly we can think of the positive definiteness of a bilinear form since,

β(x, y) = xTAy.

When the Coxeter graph Γ is associated to a finite reflection group then it’s

associated matrix (and bilinear form) is positive definite. This is since it

represents the usual Euclidean inner product relative to the simple system

∆. The converse is also true, but requires a more complex argument, which

we include as the following lemma.
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Lemma 3.2.5. If a bilinear form is positive definite, then reflection group,

W , associated to such a form is finite.

Proof. Note that by V ∗ we denote the dual space of V , i.e. the set of all

linear functionals. Also, a fundamental domain, for a group W , is a subset

U of the vector space V such that U ∩ wU = ∅ for all w ∈ W\{1}.

For v ∈ V consider the linear map, ϕ, from v ∈ V to fv ∈ V ∗ via (fv)u =

β(v, u) for all u ∈ V . This map is an isomorphism of vector spaces and since,

for w ∈ W and for all u, v ∈ V

(f(wv))u = β(wv, u) = β(v, w−1u) = (fv)(w−1u) = (w(fv))u,

we get that fw = wf for all w ∈ W . Thus ϕ is an isomorphism of W -

modules.

Now let ∆ = {α1, . . . , αn} and the collection of simple reflections be S (so

|S| = n). Then

U :=
⋂
s∈S

{g ∈ V ∗ | g(αs) ≥ 0},

is a fundamental domain of W in V ∗, to check this see [7, pg. 455] and thus

f−1U is a fundamental domain for W in V . Finally, as f−1U is nonempty and

intersects the halfspaces {v ∈ V | β(v, αs) ≥ 0}, we get that f−1U intersects

the unit ball with volume λ, where λ > 0. Then
⋃
w∈W w(f−1U) has volume

λ|W | and is contained in the unit ball, and so the value of λ|W | must be

bounded by the volume of the unit ball. Hence |W | is finite, as required.

We are now in a position to start proving some results with regards to clas-

sifying the real reflection groups.

Lemma 3.2.6. If a Coxeter graph Γ has an associated positive definite bi-

linear form then any subgraph, Γ′, also has an associated bilinear form that
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is positive definite.

Proof. Given a Coxeter graph Γ with n vertices, which has associated matrix

A, consider a nontrivial subgraph Γ′ with associated matrix A′ such that A′

is a k×k matrix for some k ≤ n. By the definition of Γ′ the edge labels must

satisfy m′ij ≤ mij where a′ij = − cos
(

π
mij

)
≥ − cos

(
π
mij

)
= aij.

Now assume that A′ is not positive definite, i.e. there exists a nonzero x ∈ Rk

such that xTA′x ≤ 0. Applying the quadratic form associated with the

matrix A to the vector with coordinates (|x1|, |x2|, . . . , |xk|, 0, 0, . . . , 0) ∈ Rn

we get:

0 ≤
∑
i,j≤k

aij|xi||xj| ≤
∑
i,j≤k

a′ij|xi||xj| ≤
∑
i,j≤k

a′ijxixj ≤ 0,

where the penultimate inequality comes from the fact that a′ij ≤ 0 for i 6= j.

Thus equality holds throughout and we get,∑
i,j≤k

aij|xi||xj| =
∑
i,j≤k

a′ij|xi||xj|.

This implies that aij = a′ij for 1 ≤ i, j ≤ k, and we must have k < n. But

the first equality shows we have a null vector for A which forces k = n,

contradicting the fact that Γ′ was a proper subgraph. So A′ is positive

definite.

3.3 Restriction of Possible Graphs

We now build up a series of results about Coxeter graphs with positive defi-

nite bilinear form which limit our choices for such graphs. We will conclude

that there are in fact only ten such types of graphs, each of which correspond
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to a finite irreducible Coxeter system, and we will have thus classified them.

Our argument follows in a similar vein to [31].

From here onwards, namely in all of the results and their proofs, we assume

that Γ is a connected positive definite Coxeter graph.

Lemma 3.3.1. Γ is a tree (i.e. a connected graph with no cycles).

Proof. Let Γ have m vertices, and assume it contains a cycle and denote this

by αi1αi2 · · ·αikαi1 for k ≥ 3 (as in Figure 3.5).

Figure 3.5

Consider the element formed from basis vectors in the following way, ei1 +

ei2 + · · ·+ eik and let this equal x. Now since qii = 1 and qij = qji we get the

following relationship,

q(x) = k + 2
k∑

i,j=1
i 6=j

qij, (3.1)

As there is an edge between each consecutive term in the cycle, i.e. an edge

between αip and αip+1 for 1 ≤ p ≤ k where αik+1
= αi1 , we must have that

m12,m23, . . . ,m(k−1)k,mk1 ≥ 3 (by our definition of a Coxeter graph. Which
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forces

qij ≤ − cos
(π

3

)
, for 1 ≤ i, j ≤ k and i 6= j, (3.2)

by the definition of qij.

Combining equations (3.1) and (3.2) we get q(x) ≤ k − k = 0, contradicting

the positive definiteness of q(x), so Γ does not contain a cycle. Thus Γ is a

tree.

Lemma 3.3.2. Let {e1, . . . , en} be a basis of V and β the associated bilinear

form to Γ then, for a fixed i, we have that,∑
j 6=i

q2
ij < 1,

where qij is as in Definition 3.2.1, namely qij = β(ei, ej).

Proof. For this proof consider a fixed i and let J = {j | j 6= i, qij 6= 0 and 1 ≤
j ≤ n}.

Claim: The set {ej}j∈J is an orthonormal basis of U =
⊕

j∈J Rej.

Proof of Claim. Since qjj = 1 by definition we just need to show that qjk = 0

for all j 6= k ∈ J . So for a contradiction assume that qjk 6= 0, then there

must be an edge between a vertex αj and αk in Γ, but by our definition of

J we have that qij 6= 0 and qik 6= 0 again meaning there must be an edge

between αi, αj and αi, αk, if we consider these three edges we obviously get

a cycle (Figure 3.6) contradicting Lemma 3.3.1, i.e. qik = 0 as required.

Finally, we let d denote the distance from ei to U and ẽi be the projection of

ei on U . Then from the claim we get that ẽi =
∑

j∈J qijej and since qij = 0
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Figure 3.6

if j 6= i and j ∈ J we conclude that,
∑

j∈J qijej =
∑

j 6=i qijej. Hence,

ẽi =
∑
j 6=i

qijej. (3.3)

Then by construction of d and ẽi and via Pythagoras’ Theorem we get:

‖ei‖2 = ‖ẽi‖2 + d2. (3.4)

Equations (3.3) and (3.4) give 1 = d2 +
∑

j 6=i q
2
ij. Then as d2 > 0 we conclude

that ∑
j 6=i

q2
ij < 1.

We now state and prove a theorem which we will use repeatedly, along with

Lemma 3.2.6, in order to classify the Coxeter graphs. It restricts our choice

of Γ further than it must be a tree.

Theorem 3.3.3. For any Coxeter graph Γ, corresponding to a finite group,

the following must hold:

1. The degree of a vertex in Γ is at most 3.
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2. A vertex has degree exactly 3 only when all the edges from it have order

3.

3. At most one edge has order greater than or equal to 4.

4. There exists an edge of order greater than or equal to 6 if there are only

2 vertices.

Proof. The proof easily follows from the fact that qij = − cos
(

π
mij

)
, where

i = αi and j = αj for some αi and αj in the vertex set of Γ.

1. If there is an edge between i and j in Γ, then we must have mij ≥ 3

and thus qij ≤ − cos
(
π
3

)
= −1

2
. So we have that q2

ij ≥ 1
4
. Then by

Lemma 3.3.2 (
∑

j 6=i q
2
ij < 1) there can be at most 3 such edges.

2. Let’s assume not, so there is a vertex of Γ, say a which has degree 3

but only two of these edges (corresponding to vertices i and j say) have

order 3 and the last one (vertex k) has order > 3. Then we get that,

qai = −1

2
, qaj = −1

2
, qak ≤ − cos

(π
4

)
= −
√

2

2
.

So we sum the squares of these and compare with Lemma 3.3.2, i.e.

∑
m 6=n

q2
nm = q2

ai + q2
aj + q2

ak ≥
1

4
+

1

4
+

2

4
≥ 1,

a contradiction. So we must have that a vertex has degree exactly 3

only when all the edges from it have order 3.

3. Again let’s assume not, i.e. there are two edges of order ≥ 4 in the

graph Γ. So there exists a subgraph Γ′ of Γ with a vertex (say a) which

belongs to 2 edges of order ≥ 4 (corresponding to vertices i and j). We
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then have that

qai ≤ −
√

2

2
, qaj ≤ −

√
2

2
and so q2

ai ≥
2

4
, q2

aj ≥
2

4
,

thus
∑

j 6=i q
2
ij ≥ 1 contradicting Lemma 3.3.2, so there can be at most

one edge of order ≥ 4.

4. Assume that there is an edge of order ≥ 6 in the graph Γ (so there

must be at least two vertices, i and j) then we have that qij ≤ −
√

3
2

and so q2
ij ≥ 3

4
. Via Lemma 3.3.2 we know that if we add another edge

(from vertex i to say k) to the graph then we must have q2
ik <

1
4

as

not to form a contradiction. But the smallest possible value is q2
ik = 1

4
,

since this corresponding to an edge of minimum order (namely 3), so

we can not find such an edges. Thus there are exactly 2 vertices in the

graph Γ.

Proposition 3.3.4. There are only two possible types of positive definite

Coxeter graphs Γ,

1. Γ is a chain and has at most one edge of order greater than or equal to

4.

2. Γ contains a unique branch point and all edges are of order 3.

Proof. Assume that Γ is not one of the above graphs, in which case it must

either be, or have a subgraph of, one of the following three graphs:

1. Two branch points separated by edges of order 3.
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Which contradicts part (1) of Theorem 3.3.3 since this would contain

as a subgraph:

2. A branch point and an edge of order greater than or equal to 4 separated

by edges of order 3.

Which contradicts part (2) of Theorem 3.3.3 since this would contain

as a subgraph:
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3. A chain with two edges of order greater than or equal to 4.

Which contradicts part (3) of Theorem 3.3.3 since this would contain

as a subgraph:

Thus there are only two possible types of positive definite Coxeter graphs,

either,

1. a chain with at most one edge of order greater than or equal to 4, or

2. a unique branch point with all edges of order 3.

We now consider each of the two types of positive definite Coxeter graphs in

turn to again reduce the possible graphs.

3.4 Γ a chain and has at most one edge of

order ≥ 4

For all of this section we let Γ have vertex set {α1, α2, . . . , αi, αi+1, . . . , αl},
which we will simplify as {1, 2, . . . , i, i+ 1, . . . , l} and let mαiαi+1

= mi(i+1) =

m and thus restrict our attention to graphs of the form in Figure 3.7.

Lemma 3.4.1. Let 1, . . . , l be the vertices of Γ (as in Figure 3.7) such that

the edge between j(j + 1) has order 3 for 1 ≤ j ≤ l − 1. Then for a vector

v ∈ V of the form v = e1 + 2e2 + 3e3 + · · ·+ lel we have ‖v‖2 = 1
2
l(l + 1).
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Figure 3.7: A chain with at most one edge of order ≥ 4

Proof. Since the edges j(j+1) have order 3 the bilinear form gives β(ej, ej) =

1, β(ej, ej+1) = −1
2
, and β(ej, ek) = 0 if k 6= j ± 1. So

(v, v) =
l∑

j=1

j2 − 2
l−1∑
j=1

1

2
j(j + 1),

= l2 −
l−1∑
j=1

j,

= l2 − 1

2
l(l − 1),

=
1

2
l(l + 1).

Again we consider Γ from Figure 3.7, if l = 2 then for m ≥ 3 we have the

dihedral group, D2n, as shown in Figure 3.8.

Figure 3.8: Coxeter graph of Dihedral group D2n

So now consider l ≥ 3, then via part 4 of Theorem 3.3.3 we have that

3 ≤ m ≤ 5. Which gives rise to the following proposition.

Proposition 3.4.2. For l ≥ 3 and 3 ≤ m ≤ 5 the only possible positive

definite graphs are the ones given in Figure 3.9 (with corresponding group

type next to each).

Proof. An (n ≥ 1). We clearly get this graph as it is the only possible graph
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Figure 3.9

of this form, a chain with all edges of order 3.

Bn (n ≥ 2). We get the Bn as this is a chain with one edge of order 4, where

that edge is one of the end edges.

F4. Assume that m = 4 and that the edge with order 4 is not one of the end

edges, (in that case we simply have Bn as above). So we have something of

the form:

Where i ≥ 2 and l − i ≥ 2 since we assume that the edge of order 4 was not

at the end. Let j = l− i for simplicity of notation and consider two vectors,

v and w such that v = e1 + 2e2 + · · · + iei and w = el + 2el−1 + · · · + jei+1

then via Lemma 3.4.1,

‖v‖2 =
1

2
i(i+ 1) and ‖w‖2 =

1

2
j(j + 1). (3.5)
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Also since the edge i(i+ 1) has order 4 we get:

(v, w) = −ij(ei, ei+1) = −ij cos
(π

4

)
= − ij√

2
. (3.6)

Using the square of the inner product formula ((v, w)2 = ‖v‖2‖w‖2 cos2(θ)

where θ is the angle between v and w) and the fact that cos2(θ) < 1 in this

case, we get the relationship (v, w)2 < ‖v‖2‖w‖2. So using the (3.5) and (3.6)

we get, (
− ij√

2

)2

<

(
1

2
i(i+ 1)

)(
1

2
j(j + 1)

)
,

i2j2

2
<

i(i+ 1)j(j + 1)

4
,

2ij < (i+ 1)(j + 1),

and since i, j ≥ 2 we must have i = j = 2 resulting in the graph of group

type F4.

H3/H4. Now assume that m = 5, we follow a similar argument as previously,

the main difference being we do not assume that the edge of order 5 is not

an end edge. This gives us a general graph of the form:

with no restrictions on i and j. Again let j = l − i and two vectors v and w

such that v = e1 + 2e2 + · · ·+ iei and w = el + 2el−i + · · ·+ jei+1 then

‖v‖2 =
1

2
i(i+ 1) and ‖w‖2 =

1

2
j(j + 1). (3.7)
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Also since the edge i(i+ 1) has order 5 we get:

(v, w) = −ij(ei, ei+1) = −ij cos
(π

5

)
= −ij

(
1 +
√

5

4

)
. (3.8)

Again the square of the inner product formula along with (3.7) and (3.8)

gives: [
−ij

(
1 +
√

5

4

)]2

<
i(i+ 1)j(j + 1)

4
,

i2j2

(
3 +
√

5

8

)
<

i(i+ 1)j(j + 1)

4
,

ij

(
3 +
√

5

2

)
< (i+ 1)(j + 1),

and since 3 +
√

5 > 5 we get that,

ij

(
5

2

)
< (i+ 1)(j + 1).

This forces either i = 1 or j = 1 so we may assume that i = 1 thus j
(

5
2

)
<

2(j+1) which gives j = 2 or j = 3 leading to the graphs we wanted, namely:
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3.5 Γ has a unique branch point and all edges

of order 3

Again in this section we let the vertices of Γ be {1, 2, . . . , l} and focus on

graphs of the form given in Figure 3.10.

Figure 3.10: Unique branch point with all edges of order 3

Without loss of generality we may assume that a ≥ b ≥ c. We will easily

be able to classify the last few positive definite Coxeter graphs after this

powerful result.

Lemma 3.5.1. For a, b and c defined in Figure 3.10,

1

a+ 1
+

1

b+ 1
+

1

c+ 1
> 1.
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Proof. Consider three vectors u, v, w ∈ V such that,

u = eia + 2eia−1 + · · ·+ aeia ,

v = ejb + 2ejb−1
+ · · ·+ bejb ,

w = ekc + 2ekc−1 + · · ·+ cekc .

Thus each vector u, v and w come from distinct branches of the graph in

Figure 3.10, i.e. (u, v) = (u,w) = (v, w) = 0 so{
u

‖u‖
,
v

‖v||
,
w

‖w‖

}
, (3.9)

are orthonormal. Also, by Lemma 3.4.1 we get,

‖u‖2 =
1

2
a(a+ 1),

‖v‖2 =
1

2
b(b+ 1), (3.10)

‖w‖2 =
1

2
c(c+ 1).

Now let U be the 3 dimensional vector space which is spanned by the vectors

in (3.9) and e1 be the vector corresponding to the branch point vertex in

Figure 3.10. As in the proof of Lemma 3.3.2 we let d be the distance from

e1 to U and ẽ1 be the projection of e1 on U . So via Pythagoras theorem we

get ‖ẽ1‖2 + d2 = ‖e1‖2 = 1 and since we have d2 > 0 we get,

1− ‖ẽ1‖2 > 0. (3.11)

Now via (3.9) we get an alternative form of ẽ1 which we will combine with

the previous to get the result, namely,

ẽ1 =

(
e1,

u

‖u‖

)
u

‖u‖
+

(
e1,

v

‖v‖

)
v

‖v‖
+

(
e1,

w

‖w‖

)
w

‖w‖
,
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i.e.

‖ẽ1‖2 =
(e1, u)2

‖u‖2
+

(e1, v)2

‖v‖2
+

(e1, w)2

‖w‖2
. (3.12)

Finally, since e1 is orthogonal to all vectors except eia , ejb and ekc we have,

(e, u) = −1

2
a, (e, v) = −1

2
b, (e, w) = −1

2
c. (3.13)

Now substituting (3.10) and (3.13) into (3.12) we get,

‖ẽ1‖2 =

(
−1

2
a

)2

· 2

a(a+ 1)
+

(
−1

2
b

)2

· 2

b(b+ 1)
+

(
−1

2
c

)2

· 2

c(c+ 1)
,

=
2a2

4a(a+ 1)
+

2b2

4b(b+ 1)
+

2c2

4c(c+ 1)
,

=
a

2(a+ 1)
+

b

2(b+ 1)
+

c

2(c+ 1)
.

Substituting this into (3.11) we get,

1−
(

a

2(a+ 1)
+

b

2(b+ 1)
+

c

2(c+ 1)

)
> 0,

1 >

(
a

2(a+ 1)
+

b

2(b+ 1)
+

c

2(c+ 1)

)
,

2 >

(
a

a+ 1
+

b

b+ 1
+

c

c+ 1

)
,

2 +

(
1

a+ 1
+

1

b+ 1
+

1

c+ 1

)
>

(
a

a+ 1
+

b

b+ 1
+

c

c+ 1

)
+(

1

a+ 1
+

1

b+ 1
+

1

c+ 1

)
,

2 +

(
1

a+ 1
+

1

b+ 1
+

1

c+ 1

)
> 3,

1

a+ 1
+

1

b+ 1
+

1

c+ 1
> 1.
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Proposition 3.5.2. The only possible positive definite graphs with a unique

branch point and all edges of order 3 are ones from Figure 3.11 (with corre-

sponding group type next to each).

Figure 3.11

Proof. Given a ≥ b ≥ c from Lemma 3.5.1 we get that 3
c+1

> 1 and thus

c = 1, so the branch has “length” 1. We now substitute c = 1 in to Lemma

3.5.1 to get,
1

a+ 1
+

1

b+ 1
>

1

2
,

and since a ≥ b we have 2
b+1

> 1
2

i.e. b = 1 or b = 2.

If b = 1 then we substitute this into Lemma 3.5.1, giving 1
a+1

> 0 so a can

be anything. Thus we get the graph corresponding to Dn in Figure 3.11.

If b = 2 then we get

1

a+ 1
+

1

3
>

1

2
,

a < 5.

But a ≥ b = 2, thus 2 ≤ a ≤ 4 and so we have a = 2, a = 3 or a = 4 which
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gives rise to E6, E7, E8 in Figure 3.11.

3.6 Classification of Real Reflection Groups

So far the results from Chapter 3 have proved the following theorem.

Theorem 3.6.1. If (W,S) is a finite irreducible Coxeter system, then its

Coxeter graph is one of the graphs in Figure 3.12.

All that is left to do in the classification is to show that each of the graphs in

Figure 3.12 give a positive definite form. To check this we need to compute

the principal minors of their corresponding matrix.

Definition 3.6.2. The minor of an n×nmatrixA is the determinant of some

submatrix of A. The principal minor is a minor whose submatrix is formed

by removing the last k rows and columns of the matrix where 0 ≤ k < n.

Example 3.6.3. The matrix we found in Example 3.2.3,

A =


1 − 1√

2
−1

2

− 1√
2

1 − cos
(
π
7

)
−1

2
− cos

(
π
7

)
1

 ,

has submatrix, (
1 −1

2

−1
2

1

)
,

and this submatrix has determinant 3
4
, so 3

4
is a minor of the matrix A.

However it is not a principal minor since the submatrix was not formed by
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Figure 3.12: Possible Coxeter graphs of finite reflection groups.

removing the last 1 or 2 rows and columns of the matrix. Such submatrices

would be, (
1 − 1√

2

− 1√
2

1

)
and

(
1
)
,

where the first is formed by removing the last row and column of A, and the

second formed by removing the last 2 rows and columns of A. These have

determinant 1
2

and 1 respectively i.e. A has principal minors 1
2

and 1. Since
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all the principal minors of A are positive we will see in the following lemma

that this means the matrix A is positive definite.

Lemma 3.6.4 (Sylvester’s Criterion). A real, symmetric matrix is positive

definite if and only if all its principal minors are positive.

See [24, pg. 328] or [22] for a proof.

Via induction on the number of vertices we can compute detA (actually

we compute det 2A for simplicity) where A is the corresponding matrix to

Γ as each minor is the determinant of a matrix corresponding to a graph

from Figure 3.12. It is then easy to check that each of the above graphs

do indeed give a positive definite form, specifically, the determinants of the

corresponding matrices of each Γ are:

Group Type Determinant

An(n ≥ 1) n+ 1
Bn(n ≥ 2) 2
Dn(n ≥ 4) 4

E6 3
E7 2
E8 1
F4 1

H3 3−
√

5

H4
7−3
√

5
2

I2(m) 4 sin2
(
π
m

)

Thus we have completed the classification of real reflection groups.



Chapter 4

Complex Reflection Groups

Though analogy is often misleading, it is the least

misleading thing we have.

Samuel Butler [9, pg. 59]

The reflections and finite (real) reflection groups we studied in Chapters 2

and 3, over Euclidean vector spaces, can be extended to more general vector

spaces. Here we consider the case when the vector space is the complex

numbers, i.e. V = C, giving rise to complex reflection groups. Ideally we

would like to proceed analogously to Chapters 2 and 3, with some definitions,

theorems and then follow this by a classification of all such groups. Although

we can classify all such groups, currently, there is no universally accepted

theory of root systems, and the subsequent material, for complex reflection

groups.

59
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4.1 Extended Definition of a Real Reflection

First we need to define a reflection over the complex numbers.

Definition 4.1.1. Let V be a finite dimensional vector space over C. Then

a reflection on V is a diagonalizable linear isomorphism s : V −→ V , of finite

order, which is not the identity, but fixes pointwise a hyperplane H ⊆ V .

We call H the reflecting hyperplane, as in the case for real reflections, all

but one eigenvalue of a reflection is equal to 1. However, in the real case,

this exceptional value is −1, but for a finite order reflection s : V −→ V,

with order n, the exceptional value is an n-th root of unity, ξ, and note that

det(s) = ξ.

Definition 4.1.2. For a finite dimensional vector space V, over C, we call

the group G ≤ GL(V ) a reflection group if G is generated by reflections.

Although we do not use it in this chapter, in a similar way to Theorem 2.1.2,

we can define a formula for calculating a complex reflection, and we include

it for completeness. Recall that for the real numbers R we had:

sαx = x− 2(x, α)α

(α, α)
.

We just need to extend our idea from an inner product to a Hermitian form.

Definition 4.1.3. A Hermitian form on a vector space V over C is a function

(·, ·) : V × V −→ C such that for all u, v, w ∈ V and a, b ∈ R:

1. (au+ bv, w) = a(u,w) + b(v, w),

2. (u, v) = (v, u),
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where (v, u) means the complex conjugate of (v, u).

Such a form is positive definite if (x, x) > 0 for all 0 6= x ∈ V .

For a finite group G ≤ GL(V ) we can find a G-invariant positive definite

Hermitian form. That is,

(g · α, g · β) = (α, β),

for all α, β ∈ V and g ∈ G. If we take any positive definite Hermitian form

(α, β)′ and replace it by,

(α, β) =
∑
g∈G

(g · α, g · β)′,

we get another Hermitian form, (·, ·), that satisfies (g(α), g(β)) = (α, β) for

all α and β in V . This gives rise to the following remark.

Remark. A reflection s : V −→ V of order n satisfies:

s(x) = x+ (ξ − 1)

(
(x, α)

(α, α)
α

)
,

where ξ is an n-th root of unity, α an eigenvector such that s(α) = ξα and

(·, ·) is a positive definite G-invariant Hermitian form.

Definition 4.1.4. We call a reflection group G ≤ GL(V ) reducible if the vec-

tor space V is a reducible G-module. That is, it has nontrivial G-submodules.

If not, then we call G an irreducible complex reflection group.

As in the case for real reflection groups we need only consider irreducible

complex reflection groups, since if G is reducible, then G is a direct product

of reflection subgroups which are irreducible in smaller dimension. As men-

tioned before, a systematic approach to roots and root systems for complex
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reflection groups has not yet been developed. However, in this chapter we

do use the term root, and here we give a few definitions to this end.

Definition 4.1.5. A (unitary) root of a reflection, in V, is an eigenvector, of

length 1, corresponding to the unique nontrivial eigenvalue of the reflection.

Notionally, for a reflection s ∈ G with root α we denote this as αs.

We similarly define a (unitary) root of a group G to be a (unitary) root of a

reflection in G.

Definition 4.1.6. As we will use later, we reserve Ω to be the set of all roots

from a reflection group G, i.e.

Ω = {αs |α a (unitary) root corresponding to the reflection s ∈ G}.

Before stating one of the main theorems proved by Shephard and Todd (and

later by Chevalley), and the most famous result in this project, we recall

what is meant by the symmetric algebra. First, pick a basis {e1, . . . , en} of

the vector space V and let X1, . . . , Xn be the basis of the dual space, V ∗,

the set of all linear functionals. We then define the symmetric algebra, S,

as S = C[V ] = C[X1, . . . , Xn] to be polynomial functions on V, and define

an action of G on C[V ] via (gf)(v) = f(g−1v). We denote the subalgebra of

G-invariant polynomials, fi for 1 ≤ i ≤ n, by SG := C[f1, . . . , fn].

Theorem 4.1.7 (Shephard-Todd (or Chevalley-Shephard-Todd)). For a fi-

nite group G of linear transformations of V the following are equivalent:

1. G is a reflection group in V .

2. There are n algebraically independent homogeneous polynomials, f1, . . . , fn ∈
SG with

|G| = deg(f1) · deg(f2) · · · · · deg(fn).
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This was proved on a case by case basis by Shephard and Todd in [39], how-

ever, we refer the reader to the proof given shortly afterwards by Chevalley

[14].

The finite irreducible complex reflection groups were first classified by Geof-

frey Shephard and John Todd in 1954 [39] and were later reclassified, in a

more modern style, by Arjeh Cohen [15]. The finite irreducible complex re-

flection groups are divided into 37 cases, there are three infinite families and

34 exceptional groups. The three infinite families are the symmetric groups,

the cyclic groups Z/mZ and the imprimitive reflection groups, G(m, p, n).

The list of irreducible complex reflection groups can be found in Table 4.1

where the groups are ordered in terms of their Shephard-Todd number (given

in their classification) and where Esp(n) is the extra special group of order

pn. The table also contains what order of reflections, and how many of each,

are in the reflection groups and what the rank (which we define below) of

each reflection group is.

We define the rank of a complex reflection group to be the dimension of the

complex vector space on which the group acts. Complex reflection groups of

rank 1 must be the cyclic groups, Z/mZ. If the rank is ≥ 2 then we consider

three cases, either it is an imprimitive reflection group, a primitive reflection

group of rank 2, or of rank ≥ 3. Here we only give the complete proof of

the classification of the imprimitive reflections group. However we will later

touch upon the cases for primitive reflection groups.

4.2 Imprimitive Reflection Groups

To classify the imprimitive reflection groups we follow a similar argument as

given by [15].
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Table 4.1: All Possible Complex reflection groups

S-T Number Rank Name Reflections

1 n− 1 G(1, 1, n) = Sym(n) 2
n(n−1)

2

2 n
G(m, p, n) for m > 1, p > 1 2

mn(n−1)
2 , dnφ(d) for

(m, p, n 6= 2) and p|m d|m
p

and d > 1

3 1 G(m, 1, 1) = Zm dφ(d) for d|m, d > 1
4 2 Z2 · Alt(4) 38

5 2 Z6 · Alt(4) 316

6 2 Z4 · Alt(4) 26, 38

7 2 Z12 · Alt(4) 26, 316

8 2 Z4 · Sym(4) 26, 412

9 2 Z8 · Sym(4) 218, 412

10 2 Z12 · Sym(4) 26, 316, 412

11 2 Z24 · Sym(4) 218, 316, 412

12 2 Z2 · Sym(4) = GL2(F3) 212

13 2 Z4 · Sym(4) 218

14 2 Z6 · Sym(4) 212, 316

15 2 Z12 · Sym(4) 218, 316

16 2 Z10 · Alt(5) 548

17 2 Z20 · Alt(5) 230, 548

18 2 Z30 · Alt(5) 340, 548

19 2 Z60 · Alt(5) 230, 340, 548

20 2 Z6 · Alt(5) 340

21 2 Z12 · Alt(5) 230, 340

22 2 Z4 · Alt(5) 230

23 3 Z2 · PSL2(5) 215

24 3 Z2 · PSL2(7) 221

25 3 Es3(3) · SL2(3) 324

26 3 Z2 × Es3(3) · SL2(3) 29, 324

27 3 Z2 × (Z3Alt(6)) 245

28 4 (SL2(3)× SL2(3)) · (Z2 × Z2) 224

29 4 (Z4 × Es2(5)) · Sym(5) 240

30 4 (SL2(5)× SL2(5)) · Z2 260

31 4 (Z4 × Es2(5)) · Sp4(2) 260

32 4 Z3 × Sp4(3) 380

33 5 Z2 × PSU4(2) 245

34 6 Z3 · SO6(3) 2126

35 6 PSU4(2) · Z2 236

36 7 Z2 × Sp6(2) 263

37 8 Z2 ·O8(2) 2120
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Definition 4.2.1. For any m, p, n ≥ 1, and p|m (p a factor of m) we define

G(m, p, n) to be the group of monomial n× n matrices (those with only one

nonzero entry in each row and column) where the nonzero entries are mth

roots of unity, and the product of these entries is a m
p

th root of unity.

Remark. G(m, p, n) can also be defined via the semi-direct product,

G(m, p, n) := A(m, p, n) o Πn,

where A(m, p, n) := the group of all diagonal n×n matrices (nonzero entries

only appear on leading diagonal) such that each of these entries are mth roots

of unity (i.e. ξmi = 1 for each i = 1, . . . , n) with the further condition that

(detA)
m
p = 1, where A ∈ A(m, p, n). Πn := the group of n× n permutation

matrices, that is n× n monomial binary matrices.

Note that since the order of the symmetric group on n letters is n! we have

that |Πn| = n!. Also |A(m, p, n)| = mn

p
since there are mn possibilities for

n × n diagonal matrices with mth roots of unity on the diagonal but since

we require (detA)
m
p = 1 and the determinant of a diagonal matrix is nothing

more than the product of the diagonal entries we have counted p times too

many elements, thus,

|G(m, p, n)| = mnn!

p
.

The only conjugates which appear in this set of groups is G(2, 1, 2) conjugate

to G(4, 4, 2). We discuss this fact further after Lemma 4.2.12. The only

reducible case is for (m, p, n) = (2, 2, 2).

Examples 4.2.2. The G(m, p, n) give rise to the real reflection groups, for



CHAPTER 4. COMPLEX REFLECTION GROUPS 66

example,

G(m,m, 2) = Z/mZ o Π2 = D2m = W (I2(m)), (dihedral group)

G(1, 1, n) = W (An−1) (n ≥ 2), (symmetric group)

G(2, 1, n) = (Z/mZ)n o Πn = W (Bn),

G(2, 2, n) = (Z/mZ)n−1 o Πn = W (Dn).

Definition 4.2.3. A group G ≤ GL(V ) is called imprimitive if there exists

a decomposition of the vector space V =
⊕k

i=1 Vi = V1 ⊕ · · · ⊕ Vk for k > 2

where the subspaces (Vi)1≤i≤k are nontrivial proper linear subspaces of V and

are permuted transitively by G (as in Definition 1.2.7 there exists a transitive

group action of G on {Vi | 1 ≤ i ≤ k}). We call the (Vi)1≤i≤k a system of

imprimitivity for G.

We can similarly define the decomposition V =
⊕k

i=1 Vi to be imprimitive if

for all g ∈ G and for all Vi we get gVi = Vj for some j, and for all Vi and Vj

there exists a h ∈ G such that hVi = Vj.

Proposition 4.2.4. If G is an irreducible imprimitive reflection group in V ,

with dimension n, and (Vi)1≤i≤k is a system of imprimitivity for G, then:

1. For 1 ≤ i ≤ k we have dimVi = 1

2. For an arbitrary reflection s ∈ G, either:

(a) sVi = Vi for 1 ≤ i ≤ n, or,

(b) there exists i 6= j, for 1 ≤ i, j ≤ n, such that any root of s is

contained in Vi + Vj, where sVi = Vj and sVk = Vk for all k 6= i, j

and s is an involution, that is, of order 2.

Proof. 1. For a contradiction fix i such that dimVi > 1. Then since G is

irreducible there exists a j such that j 6= i and a reflection s ∈ G such
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that sVi = Vj. Thus dim(Vj ∩ Vi) > 0, which contradicts the fact that

Vi ∩ Vj = {0}, so dimVi = 1.

2. Let s ∈ G be a reflection with root αs, we first assume that (αs, Vi) 6= 0

(where (·, ·) is the inner product over C) for i = 1 or i = 2. Let ξ

be a nontrivial eigenvalue of s such that (αs, V1) 6= 0 and αs 6∈ V1.

We know sV1 = V2 since the group is imprimitive. Now consider a

nonzero xi ∈ Vi for i = 1 or i = 2 where sx1 = x2. Then there exists

a j ∈ {1, . . . , n} with s2x1 ∈ Vj and so s2x1 ∈ (Cαs + Cx1) ∩ Vj. But

(Cαs + Cx1) ∩ Vj = (V1 + V2) ∩ Vj, which implies that j = 1 or j = 2.

But since αs 6∈ V1 we have that s2x1 = x1 and ξ2 = 1 which means that

ξ = −1 and s is of order 2. Then, as αs is a scalar multiple of (x1−x2),

we get that αs ∈ V1 + V2.

We now consider (αs, Vi) 6= 0 for i ≥ 3, thus there exists j ≥ 3 such that

sVi = Vj. Which forces αs ∈ (Vi+Vj)∩(V1+V2) = {0}, a contradiction.

Thus (αs, Vi) = 0 for i ≥ 3 and so sVk = Vk for k ≥ 3.

We will now show that the G(m, p, n) are irreducible in most cases.

Lemma 4.2.5. G(m, p, n) is irreducible if and only if m > 1 and (m, p, n) 6=
(2, 2, 2).

Proof. “⇒” Assume that G(m, p, n) is irreducible, in which case G(m, p, n)

fixes a nontrivial proper subspace W of V . Since W is a Πn-invariant sub-

space of V, we get W = C(e1 + e2 + · · · + en), up to switching between

W and W⊥ := {v ∈ V | (w, v) = 0 ∀w ∈ W}. Now as A(m, p, n) stabi-

lizes C(e1 + · · · + en) all the diagonal coefficients of any of the elements in

A(m, p, n) must be equal, this implies that we must have (m, p, n) = (1, 1, n)

or (m, p, n) = (2, 2, 2).
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“⇐” We prove the contrapositive, if m = 1 then we must have G(1, 1, n)

which is clearly reducible since this is symmetric group on n − 1 letters.

Otherwise we must have G(2, 2, 2) ∼= V ∼= Z2 × Z2, the Klein four-group,

which is reducible in V .

From here onwards we use the set of unitary complex numbers in a number

of our proofs, so we first formally define them.

Definition 4.2.6. The set of unitary complex numbers, U, are those which

when multiplied with their complex conjugate give 1, i.e.

zz = 1,

for all z ∈ U.

The G(m, p, n) are imprimitive reflection groups in Cn, and the next theo-

rem proves exactly this. The system of imprimitivity for the G(m, p, n) is

(Cei)1≤i≤n, where the ei make up the standard basis of Cn.

Theorem 4.2.7. Consider an irreducible imprimitive reflection group G on

a vector space V , where dimV ≥ 2. Then G is conjugate to G(m, p, n) for

m, p ∈ N, where p|m.

Proof. Let G be an irreducible imprimitive reflection group on a vector space

V . Then we can find an orthonormal basis of V, say {ε1, . . . , εn} such that

Vi = Ciεi, for 1 ≤ i ≤ n, form a system of imprimitivity for G. Then for

j > 1 there is a corresponding reflection sj ∈ G such that sjε1 = εj from

Proposition 4.2.4. Without changing the conjugacy class of G we see that in

fact {ε1, . . . , εn} is the standard basis. So we relabel it {e1, . . . , en}, in line

with our notation. It again follows from Proposition 4.2.4 that Πn (i.e. the

group of n× n permutation matrices) is a subgroup of G.
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Now consider the cyclic group generated by the reflections which leave a

hyperplane (without loss say He1) of V fixed pointwise, and let the order of

such a group be q. Thus A(q, 1, n) (defined as in the remark after Definition

4.2.1) is a subgroup of G.

Again, via Proposition 4.2.4, the only reflections outside of A(q, 1, n) o Πn

are s′ ∈ G with s′ei = ϕej, for ϕ ∈ U\{1} with i 6= j and s′ek = ek for all

k 6= i, j. Then we can take i = 1 and j = 2 up to conjugacy by an element

of Πn. Let s = s2 ∈ G be a reflection with se1 = e2, then (ss′)e1 = ϕe1 and

(ss′)e2 = ϕ−1e2, thus ϕ is a root of unity. Finally, for a reflection t ∈ G such

that tV1 = V2, we define m to be the maximum order of the elements st ∈ G.

So we see that A(m,m, n) ≤ G.

Now let p = m
q

, then we have that A(m, p, n) = 〈A(q, 1, n), A(m,m, n)〉 so

G(m, p, n) = A(m, p, n)oΠn ≤ G. But all reflections of G must be contained

in this subgroup, so the subgroup must in fact be equal to the group G, i.e.

G = G(m, p, n).

Definition 4.2.8. Recall that U is the set of unitary complex numbers and

Ω = {αs |α a (unitary) root corresponding to a reflection s ∈ G}, let P =

{Uαs |α a root of a reflection s ∈ G}. Since G acts on P there is a map

τ : P −→ Ω where, for L ∈ P , we define τ(L) = α if and only if α ∈ L ∩ Ω.

If O is an orbit of G in P define fO ∈ S by fO =
∏

L∈O lτ(L).

Definition 4.2.9. We define another map, χO, with O the same as above,

by χO : G −→ U via

χO(g) =
∏

Uαsi∈O

(
1

det si

)
,

where {s1, . . . , sr} are the reflections of G and g = s1 · s2 · · · sr.
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Definition 4.2.10. If V is a CG-module then the function:

C[G] −→ C

g 7−→ Tr(ρ(g))

where ρ : G −→ GL(V ) is a representation of G on V and Tr is the trace, is

called the C character of V .

In the following proposition we see that characters of G are products of the

above χO’s.

Proposition 4.2.11. Any linear character of G is the product of some χO,

where χO is defined as in Definition 4.2.9.

Proof. We prove this by induction. For a base case let φ be any nontrivial

linear character of G, and let f ∈ S be a nonzero homogeneous polynomial

of minimum degree such that gf = φ(g)f for g ∈ G. Such f exist as S/SG is

isomorphic to the regular module (the group algebra considered as a module

and where any irreducible module occurs as a submodule). Now, if s ∈ G is

a reflection such that φ(s) 6= 1 then for any v ∈ V such that (v, αs) = 0 we

must have that

f(v) = f(s−1v) = (sf)v = φ(s)f(v),

which implies that f(v) = 0. Hence f is divisible by lαs and lτ(L) for any L

in the G-orbit O of Uαs, thus f is divisible by fO.

Now define f1 := f
fO

and φ1 := φ
χO

. If f1 is not a constant then it is a nonzero

homogeneous polynomial of minimum degree such that gf1 = φ1(g)f1, again

for g ∈ G, and has degree strictly lower than the degree of f , so we are done

by induction.

Remark. G = G(m, p, 2) consists of r G-orbits where r = hcf(2,m)

hcf(2,m
p )

each of
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length
m·hcf(2,m

p )
hcf(2,m)

.

Lemma 4.2.12. The degrees of G(m, p, n) are m, 2m, . . . , (n− 1)m, m
p
n.

Proof. LetX1, X2, . . . , Xn be polynomial functions corresponding to the stan-

dard basis {e1, . . . , en} of V , such that X1, . . . , Xn ∈ S (where Xi : V −→ C
for 1 ≤ i ≤ n) and let q = m

p
. Then the first n−1 elementary symmetric poly-

nomials in (Xm
i )1≤i≤n (those of the form Xi(ej) = δij) and (X1 ·X2 · · ·Xn)q

form a set of G(m, p, n) invariant homogeneous algebraically independent

polynomials and,

m · 2m · · · · · (n− 1)m · qn = qmn−1n!,

=
mnn!

p
,

= |G(m, p, n)|,

and so by Theorem 4.1.7 the degrees of G(m, p, n) are m, 2m, . . . , (n − 1)m

and qn = m
p
n.

Corollary 4.2.13. The order of the centre of the G(m, p, n)’s is equal to
hcf(p,n)·m

p
.

Proof. An element of the centre must be a diagonal matrix, i.eA :=


λ 0

. . .

0 λ


where A is an n × n matrix. Then, since we know that the determinant of

a diagonal matrix is the product of the diagonal elements, detA = λn. We

also have the extra condition, since A ∈ G(m, p, n) that (detA)
m
p = 1, i.e.

(we let q = m
p

as before)

(detA)
m
p = (λn)

m
p = λ

nm
p = λnq = 1.
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The number of solutions to this equation is,

hcf(nq,m) = hcf(nq, pq),

= q · hcf(n, p),

=
m · hcf(n, p)

p
.

Thus |Z(G(m, p, n))| = m·hcf(n,p)
p

.

As was previously mentioned the only conjugates in theG(m, p, n) areG(2, 1, 2)

and G(4, 4, 2). To show this consider two groups G1 := G(m, p, n) and

G2 := G(m′, p′, n), these groups will be conjugate if and only if there de-

grees are equal. We fix n = 2 and then we see that the degrees of G1 are m

and 2m
p

while the degrees of G2 are m′ and 2m′

p′
. We cannot have that m = m′

and 2m
p

= 2m′

p′
otherwise we would just get that G1 = G2 so we must have

m = 2m′

p′
and m′ = 2m

p
. Via rearranging the first equation and substituting

the second into it we get that

p′ =
2m′

m
,

p′ =
2
(

2m
p

)
m

,

mp′ =
4m

p
,

pp′ = 4.

So we have two cases to consider (without loss of generality for the second

case we assume p = 1, we could let p′ equal 1, but that will result in exactly

the same result up to renaming G2 as G1, and vice versa).

Case 1: p = p′ = 2

In this case G1 and G2 both just have a single degree (m and m′ respectively),
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forcing n = 1 and so G1 = G2.

Case 2: p = 1 and p′ = 4

So the degrees of G1 are m and 2m while the degrees of G2 are m′ and m′

4

and this condition forces us to have m = 2 and m′ = 4.

Thus we have that G(2, 1, 2) and G(4, 4, 2) have the same degrees, are con-

jugate and are the only complex reflection groups of rank 2 which do. A

similar argument can be used for n > 2.

Theorem 4.2.14. Suppose G = G(m, p, n) is irreducible, i.e. p|m and n ≥
2, then G has a unique system of imprimitivity if (m, p, n) 6∈ {(2, 1, 2), (4, 4, 2),

(3, 3, 3), (2, 2, 4)}.

Proof. Let a basis of the vector space V be {e1, . . . , en}. Then Cei for 1 ≤ i ≤
n is a system of imprimitivity for G(m, p, n). Again let P = {Uαs |α a root

of a reflection s ∈ G} and consider an orbit of P that gives another system

of imprimitivity. Via the remark after Proposition 4.2.11, with q = m
p

, we

have that:

n = 2 =
m · hcf(2, q)

hcf(2,m)
, (4.1)

or

n > 2 and mn(n− 1) = 2n. (4.2)

Now if we have (4.1) we get that (m, p, n) must be either (2, 1, 2) or (4, 4, 2).

(4.2) gives us a contradiction in Theorem 4.2.7 with m > 1. So none of

the G(m, p, n) have a system of imprimitivity coming from roots other than

those of the canonical system.

We now work to show that (m, p, n) 6∈ {(2, 2, 4), (3, 3, 3)} if G(m, p, n) has a

unique system of imprimitivity (in fact we show (m, p, n) 6∈ {(2, 1, 2), (2, 2, 4),

(3, 3, 3)}). Assume that (Vi)1≤i≤n form a system of imprimitivity different
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from the one formed by L1, . . . , Ln and that it does not correspond to any

orbit of P . We define l1, . . . , ln to be distinct (not equal up to a constant

factor) linear homogeneous polynomials of degree n with respect to V1, . . . , Vn

(as in Proposition 4.2.4).

Let f = l1 · l2 · · · ln, and for a contradiction assume that f is semi-invariant

(f(gx) = c · f(x), for a constant c ∈ C and for all g ∈ G), but not necessarily

invariant. Then in the same was as Proposition 4.2.11 we get that f is the

product of an invariant and some fO where O is an orbit of P . By definition

of f , deg f = n and since G is irreducible there is an orbit O in P of length

n such that f = fO, a contradiction. Thus f is invariant.

We know that m must divide n since f 6∈ C(X1 · X2 · · ·Xn) implies there

exists α ∈ C such that f−α(X1 · · ·Xn) is a nonzero homogeneous G-invariant

polynomial in (Xm
i )1≤i≤n as in Lemma 4.2.12.

Finally we let l1 = γ1X1 + γ2X2 + · · · + γnXn where the γi ∈ C. Then

define r to be the number of γi’s which are the same, i.e. r = |{γk | γk =

γi for 1 ≤ i ≤ n and k 6= i}|, and r0 to be the number of nonzero γi’s, i.e.

r0 = |{γi | γi 6= 0 for 1 ≤ i ≤ n}|, note that r0 6= 1. Then since the stabilizer

in Πn of Cl1 has order less than or equal to r!(n− r)! and the size of the Πn

orbit of Cl1 is less than or equal to n, we must have,

n ≥ n!

r!(n− r)!
=

(
n

r

)
.

Thus r = 1, r = n− 1 or r = n.

Since r0 6= 1 we have r0 = n as if r0 = n − 1 then the stabilizer of Cl1 in

G(m, p, n) would have order ≤ mq(n−1)!. Thus n ≥ mn−1qn!
mq(n−1)!

= mn−2n which

implies that n ≤ 2 and l1 ∈ CX1, but this contradicts that V1, V2, . . . , Vn is

different from L1, . . . , Ln, so r0 6= n− 1, hence r0 = n. So all of the γi’s are

nonzero. We can conclude that the Cl1 stabilizer in G(m, p, n) is ≤ mn! and
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so

n ≥ mn−1qn!

mn!
= mn−2q = mn−2 · m

p
=
mn−1

p
.

Combining this with the fact that m is a factor of n (as we worked out

earlier in the proof) we have that (m, p, n) must be either (2, 1, 2), (2, 2, 4)

or (3, 3, 3).

Thus G(m, p, n) has a unique system of imprimitivity if (m, p, n) 6∈ {(2, 1, 2),

(4, 4, 2), (3, 3, 3), (2, 2, 4)}.

This completes the classification of the imprimitive complex reflection groups

since we have shown that if m > 1 and (m, p, n) 6= (2, 2, 2) for G(m, p, n)

then then G(m, p, n) is an irreducible reflection group (this is via Lemma

4.2.5 and Theorem 4.2.7). In particular the imprimitive complex reflec-

tion groups contain a unique system of imprimitivity as long as (m, p, n) 6∈
{(2, 1, 2), (4, 4, 2), (3, 3, 3), (2, 2, 4)}, this is via Theorem 4.2.14.

4.3 Primitive Complex Reflection Groups

We have seen in the classification of the imprimitive reflection groups that

such groups give rise to an infinite family of complex reflection groups. How-

ever, as has been previously mentioned, we still have one infinite family and

34 exceptional cases unaccounted for. These are the primitive complex re-

flection groups, and although we do not give a full proof of the classification

of such groups here, we briefly discuss them an refer the reader to [15] for a

full proof. The proof is split into two cases, the primitive reflections groups

of rank 2 and of rank ≥ 3.
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4.3.1 Rank 2

Of the 34 exceptional cases 19 of them are primitive complex reflection groups

of rank 2.

We need to find a group G generated by reflections such that G ≤ GL2(C).

Since we can decompose GL2(C) into C× SL2(C) and the conjugacy classes

of finite subgroups of SL2(C) are known, this is fairly simple to find. SL2(C)

contains as its conjugacy classes, Z/mZ, D2m (the dihedral group) and for

k = 3, 4, 5 groups with the presentation 〈x, y |x2 = y3 = (xy)k = 1〉 (that is

the tetrahedral, octahedral and icosahedral groups respectively). Then for

subgroups K and H of SL2(C) such that

H / K ≤ SL2(C) and K/H = Z/mZ,

we see that we can get all subgroups of GL2(C) by defining a group G such

that G ≤ Z/kmZ × K ≤ GL2(C), for each k ≥ 2 and where Z/kZ / G

and K = G/(Z/kZ). Specifically, when K is the tetrahedral group we get

4 primitive complex reflection groups, when K is the octahedral group we

get 8 and finally for the icosahedral group we get 7. Giving our 19 primitive

complex reflection groups of rank 2.

4.3.2 Rank ≥ 3

The primitive complex reflection groups of rank ≥ 3 give rise to 15 excep-

tional cases and the symmetric groups (one of three infinite families). These

are classified in a similar way to the real case, but instead of using Cox-

eter graphs, associated root graphs (first described by Cohen in [15] as an

extension of Coxeter graphs) are used.



Chapter 5

Computational Results for

Complex Reflection Groups

Problems worthy of attack prove their worth by

hitting back.

Piet Hein [19, pg. 401]

5.1 GAP

GAP (Groups, Algorithms, Programming) [38] is a program for computa-

tional discrete algebra, which is particularly useful for computational group

theory. It is a text based computer algebra system which includes a large

number of functions that implement various algebraic algorithms. A vast

number of these are with regards to groups, and, with the addition of an

additional package, you can access algorithms regarding complex reflection

groups. This package is called CHEVIE and was developed by Geck, Hiß,
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Lübeck, Malle and Pfeiffer [21]. Crucially for us the CHEVIE package con-

tains the command ComplexReflectionGroup which gives each of the com-

plex reflection groups. The input takes one of two forms, either an integer in

the range 4, 5, . . . , 37 corresponding to one of the 34 exceptional groups, or it

takes a triple (m, p, n) corresponding to a specific group in one of the infinite

families. Furthermore CHEVIE includes Reflections as a command, which,

as an output, gives a set of reflections from which we can find all reflections

from a particular complex reflection group.

5.2 Determining the Reflections of a Com-

plex Reflection Group

Most computations we want to do with complex reflection groups will first

require us to actually have all the reflections of a particular group rather than

just the elements. So to begin this chapter we present a program for creating

a set of the reflections for any complex reflection group as permutations.

We first define a function, ref, which we will use to form the set of reflections.

gap> ref:=function(W,a)

> local i,Ref;

> Ref:=Reflections(W);

> for i in Ref do

> Add(a,i);

> Add(a,i^2);

> Add(a,i^3);

> Add(a,i^4);

> od;

> return a;
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> end;

To use this function we first need to specify the complex reflection group we

want to find the reflections of. Define an empty list, run the program and

then turn the outputted list into a set (since we will add some reflections

more than once), this set will contain the reflections of the group. However

it will also contain the identity, which as in Definition 4.1.1 we do not count

as a reflection, so we must remove this.

The justification for this code is that the function Reflections(W) outputs a

number of reflections, but not the powers of these reflections. We know that

the highest order of a reflection in an exceptional complex reflection group is

5 (via the classification) and that is why in the function we only add up to

a 4th power. Clearly this will add a number of reflections more than once,

and if the reflection group contains a reflection of an order less than 5 then

this function will add the identity. Thus, after calling the function, we turn

the list into a set and remove the identity using:

gap> a:=Set(a);;

gap> RemoveSet(a,());;

Example 5.2.1. For an example we consider the complex reflection group

G5 (that is the group in Table 4.1 with Shephard-Todd number 5). First we

let W be such a group, and a be an empty list:

gap> W:=ComplexReflectionGroup(5);;

gap> a:=[];;

Then apply the function to add the reflections to the list a.

gap> ref(W,a);;
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Finally, our list a contains the identity, and a number of the reflections are

repeated. So to get the complete set of reflections we turn a into a set and

removing the identity.

gap> a:=Set(a);;RemoveSet(a,());;

The set a then contains all the reflections of G5 as required, and Appendix

A is that output.

5.3 Finding the Order of Reflections

As we can see in Table 4.1, the number and order of reflections in each group

are known. Note that 26, 316, 412, as in G10, means that there are 6 reflections

of order 2, 16 reflections of order 3 and 12 reflections of order 4. For G2 and

G3 by φ(d) we mean the Euler-phi function which is the number of positive

integers less than or equal to d that are coprime to d. In Section 5.2 we

created a program to form a set of all reflections for that group. Here we

create a program to calculate the order of each reflection in this set. We

give such a program, named reforder, in Appendix B. The input for this

program is the set a of all reflections for the particular group which we get

from our previous function ref.

This function organises the reflections in the set a into subsets, each one

containing reflections of the same order. Then for each possible value the

program outputs if the group contains a reflection of that order, and how

many such reflections there are.

Example 5.3.1. For a quick example we show how to find the order of the

reflections in the group G11.
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First, in the same way as in Example 5.2.1, we create a set a with all the

reflections in. We do this by defining an empty list, a, the specific complex

reflection group W that want and then apply the ref function.

gap> W:=ComplexReflectionGroup(11);;

> a:=[];;

> ref(W,a);;

> a:=Set(a);;

> RemoveSet(a,());;

This a now contains all the reflections of G11. We find the order of all the

reflections by using the function reforder (which must have been previously

defined by the user). Below we give the output that GAP would give:

gap> reforder(a);

The reflections in G11 are

2^18, 3^16, 4^12,

Which is exactly what we would expect compared to Table 4.1.

5.4 Well-Generated Complex Reflection Groups

Once again we refer to Table 4.1, in particular to the ‘rank’ column. Recall

that the rank of a complex reflection group is the dimension of the complex

vector space on which the group acts. The following theorem tells us that

we need at most one more than the rank number of reflections in order to

generate any irreducible complex reflection group. The Cartan-Dieudonné

theorem says exactly this for real reflection groups, namely that they can be

generated with n reflections.
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Theorem 5.4.1. If the rank of an irreducible complex reflection group, G,

is n then the group G is generated by n or n+ 1 reflections.

Proof. For the infinite families consider a groupG(m, p, n) and let {e1, . . . , en}
be a basis of the corresponding vector space V . We split the proof into two

cases.

Case 1: p = 1 or p = m

In this case we take the following n − 1 reflections of order 2 with roots

e1 − e2, e2 − e3, . . . , en−1 − en and if p = 1 a reflection of order m with root

e1 or if p = m a reflection of order 2 with root e1 − e
2πi
m e2.

Case 2: p 6= 1 and p 6= m

Take the n generating reflections for G(m,m, n) (as we did in Case 1) and

then to generate the whole of G(m, p, n) add an extra reflection of order m
p

with root e1. Resulting in a generating set of reflections of size n+ 1.

For the 34 exceptional complex reflection groups we get that this result holds

via the classification (as given in [15]).

Motivated by this theorem we get the definition of a well-generated irre-

ducible complex reflection group.

Definition 5.4.2. An irreducible complex reflection group G, of rank n, is

well-generated if it is generated by n reflections.

A reducible complex reflection group is said to be well-generated if it is the

product of well-generated irreducible complex reflection groups.

Again, it is well known which of the complex reflection groups are well-

generated, and for a more elegant argument than we present here, regarding

the degrees of a complex reflection group, we refer the reader to [6]. Here
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our proof again uses GAP.

We define the function wellgen given in Appendix C. This function, as

its input, uses the particular complex reflection group W and the set of

reflections, as found in Section 5.2 using ref. The output of this function

is simply text saying whether or not the group is well-generated. Note that

the program uses a standard GAP function Combinations, which is basically

a ‘power set’ function, that is, it forms all subsets of particular size of any

given set. In this program we find all subsets of reflections with size equal

to the rank of the reflection group. The function then checks whether the

group can be generated by one of these sets.

Example 5.4.3. We use this function in a similar way to previously, first

defining the complex reflection group, an empty list, and using the ref func-

tion.

gap> W:=ComplexReflectionGroup(11);;

> a:=[];;

> ref(W,a);;

> a:=Set(a);;

> RemoveSet(a,());;

We now use our new function wellgen and give the output:

gap> wellgen(W);

G11 is not well-generated.

We can apply this function to any of the exceptional complex reflection

groups, and we get the Table 5.1 of which of these are well-generated.
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Table 5.1: Well-Generated Complex reflection groups

S-T Number Well-Generated? S-T Number Well-Generated?
1 Yes 20 Yes
2 Yes if p = 1 or m 21 Yes
3 Yes 22 No
4 Yes 23 Yes
5 Yes 24 Yes
6 Yes 25 Yes
7 No 26 Yes
8 Yes 27 Yes
9 Yes 28 Yes
10 Yes 29 Yes
11 No 30 Yes
12 No 31 No
13 No 32 Yes
14 Yes 33 Yes
15 No 34 Yes
16 Yes 35 Yes
17 Yes 36 Yes
18 Yes 37 Yes
19 No
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5.5 Order of Reflections Needed to Generate

a Complex Reflection Group

In this section we consider which reflections from a complex reflection group

are actually needed to generate the group. We first consider generating

sets of minimum size (i.e. either with the rank or rank plus one number

of elements). From the previous section we know which are well-generated

and so we know how many reflections we will need to generate each group.

Clearly we need not consider the groups Gm for m ∈ {1, 4, 5, 12, 13, 16, 20,

22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37} as they only contain

reflections of one order. It is then useful to know which of the remaining

groups are well-generated and which are not, we can get this information from

our previous work (the well-generated groups have Shephard-Todd numbers

6, 8, 9, 10, 14, 17, 18, 21 and 26).

The program we use is called requiredorders and is considerably longer

than our other programs. However, it is no more complicated, there are

simply a lot more possibilities and so there is a lot of repetition in the code.

It can be found in Appendix D. The program once again is called in a similar

way, however, so the code can be used more universally, we add an extra

argument, that is the number of reflections required to generate the given

reflection group. As previously mentioned this will either be the rank of the

group or the rank plus one. As well as the number of reflections needed to

generated the group, like our other functions, requiredorders takes as its

input the particular group, W , and the set of all reflections of the group. We

give two examples to demonstrate this, one for a well-generated group, say

G10, and a not well-generated group, G11.

Example 5.5.1. We first give an example for a well-generated group, G10,

and so we define a variable, l, to be equal to the rank of the group, which is
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the number of reflections needed to generated the group.

gap> W:=ComplexReflectionGroup(10);;

> a:=[];;

> ref(W,a);;

> a:=Set(a);;

> RemoveSet(a,());;

> l:=Rank(W);;

> requiredorders(W,a,l);

G10 cannot be generated solely by reflections of order 2

G10 cannot be generated solely by reflections of order 3

G10 cannot be generated solely by reflections of order 4

G10 cannot be generated by reflections of orders 2 and 3

G10 cannot be generated by reflections of orders 2 and 4

G10 can be generated by reflections of orders 3 and 4

So we see that G10 can be generated by a reflection of order 3 and a reflection

of order 4. You do not need a reflection of order 2.

Example 5.5.2. We now do the same as above, but for G11, which is not

well-generated. So this time we set l to equal the rank plus one.

gap> W:=ComplexReflectionGroup(11);;

> a:=[];;

> ref(W,a);;

> a:=Set(a);;

> RemoveSet(a,());;

> l:=Rank(W)+1;;

> requiredorders(W,a,l);

G11 cannot be generated solely by reflections of order 2
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G11 cannot be generated solely by reflections of order 3

G11 cannot be generated solely by reflections of order 4

G11 cannot be generated by reflections of orders 2 and 3

G11 cannot be generated by reflections of orders 2 and 4

G11 cannot be generated by reflections of orders 3 and 4

Here we see that to generate G11 you need one reflection of each order.

Using the above method we can work out which reflections are needed for

which complex reflection groups. Indeed, in all but two cases you need at least

one reflection of each order! The two exceptional cases are G8 (generated by

two reflections of order 4) and G10 (generated by a reflection of order 3 and

a reflection of order 4). G8 is particularly interesting when it is compared

to G9, they are both well-generated and both contain reflections of orders 2

and 4. However G8 can be generated by reflections of order 4, whereas G9

can not, it needs reflections of orders 2 and 4.
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Conclusion

I do not know what I may appear to the world; but

to myself I seem to have been only like a boy playing

on the seashore, and diverting myself in now and

then finding a smother pebble or a prettier shell than

ordinary, whilst the great ocean of truth lay all

undiscovered before me.

Sir Isaac Newton [23, pg. 231]

6.1 Recent Developments

As mentioned in the abstract, the theory of complex reflection groups is

an active area of research. The classification argument used in Chapter 4

is due to Cohen, from 1976, and since then there have been a number of

developments. Most of these discussed here have been to try and create a

universal theory of roots and root systems.

88
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6.1.1 Arjeh Cohen

Although the complex reflection groups were first classified by Shephard and

Todd in 1954 the classification argument that is mostly used today, including

the one in this project, is that of Cohen. In his 1976 paper he presented root

systems for complex reflection groups of dimension greater than or equal to

3. These systems were quite different from the systems in the real case, and

they do not work in the same way. For example, there is no length function

in this system.

6.1.2 Mervyn Hughes

Hughes has published a series of papers in the area of complex reflection

groups [27], including root graphs [28] and his PhD thesis in the representa-

tions of such groups [26].

In 2001, Hughes with Alun Morris [29] gave a theory of root systems for well-

generated two dimensional reflection groups, expanding Cohen’s work in this

area. This was done by exploring root graphs, as introduced by Coxeter in

1967 [18], and further studied by Hughes in 1999 [28], by developing a new

way of classifying these finite reflection groups via particular polynomials

with all their roots in (0, 1). The irreducible well-generated two dimensional

complex reflection groups have a one-to-one correspondence with such poly-

nomials. Although this is a working system, it is not completely analogues

to root systems for real reflection groups, and it still does not give rise to a

corresponding idea of the length of an element.



CHAPTER 6. CONCLUSION 90

6.1.3 Himmet Can

Can is another person who has published a large number of papers regard-

ing complex reflection groups, and similarly to Hughes, on a variety of top-

ics. Representations of G(m, 1, n) [10], combinatorial results [11] and, with

Hawkins, a method for obtaining subsystems via a computer [13].

In [27] and [28] Hughes developed what he called ‘extended Cohen diagrams’,

building upon Cohen’s work in [15] to get subsystems of complex root sys-

tems. However Hughes’ method did not work in every case, and this was

what Can hoped to improve upon in his 2006 paper [12], where he classified

proper subsystems.

6.1.4 Kirsten Bremke and Gunter Malle

Bremke and Malle have published two papers together on the concept of

a length function for complex reflection groups. Such a function, used in

conjunction with a theory of root systems, could potentially be very valuable

given its importance for real reflection groups.

Firstly in [4] they give a root system and length function for the reflection

groups G(e, 1, n) and in [5] this is extended to G(e, e, n). When e is even this

length function is completely analogous to the case for real reflection groups

(this appears as Proposition 1.19 in [5]). Clearly this is not a function for all

possible complex reflection groups, but for the G(e, e, n) it is a very powerful

tool.
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6.1.5 JianYi Shi and Li Wang

‘Reflection subgroups and sub-root systems of the imprimitive complex reflec-

tion groups’ by Wang and Shi [40] is the most recent paper that we consider

here. In this paper they classify all irreducible reflection subgroups of the

imprimitive complex reflection groups (the G(m, p, n)). They classify such

subgroups in a way much more similar to what we have done in Chapter 3,

forming graphs from reflection sets (this was introduced by Howlett and Shi

in [25]). Not enough time has passed since the publication of the paper to

comment on the usefulness of it, however, the use of associated graphs for

complex reflection groups seems like a step in the right direction.

6.1.6 Gustav Lehrer and Donald Taylor

We conclude this section on modern developments with a book, rather than

a series of papers. That is the 2009 work by Lehrer and Taylor, ‘Unitary

Reflection Groups’ [34]. The book contains a series of results taking the

reader from the earliest work on complex reflection groups (the classification

as done by Shephard and Todd) up to very recent developments in the field

(including root systems for the G(m, p, n)). They also give a huge number

of exercises for readers of varying levels. I recommend the book to anyone

looking to study complex reflection groups further.

The book also contains applications of complex reflection groups and this

can be found in Appendix C of [34].
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6.2 Completion of the Project

The aim of this project was to build up the theory of reflection groups, which

we have done through the classification of both real and complex reflection

groups.

A number of results have been explored regarding real reflection groups. In

Chapter 2 we worked towards the presentation of all such groups (Theorem

2.3.1), i.e. a real reflection group W has presentation

〈s1, s2, . . . , sn | (sisj)mij = 1〉.

This was the culmination of a number of theorems and lemmas, starting with

the development of the theory of root, positive and simple systems.

The classification of real reflection groups (or finite Coxeter groups) was

presented in Chapter 3 via their Coxeter graphs, namely the ones from Figure

3.12. In Chapter 4 the concept of a reflection was extended to that of a

complex reflection. Here we discussed that there are in fact three infinite

families of complex reflection groups, and 34 exceptional cases. The proof of

the classification of the imprimitive reflection groups was given, and this was

done in the same manner as Cohen in 1976 ([15]). Although the complete

proof of the primitive reflection groups was not given, the outline of the idea

was discussed and the complete proof referenced.

Chapter 5 contained a number of computational results which had been cal-

culated via GAP with regards to complex reflection groups. Ranging from

which are well-generated to what order reflections are required to generate

them. The code for the various used programs appear in the appendices.

The project has been concluded by discussing recent developments in the

field, referring to specific authors and papers. For further study, as a con-
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tinuation of this project, one could extend the ideas of Section 5.5. In this

section it was investigated what order of reflections, in a minimum generating

set, are needed to generate the whole group. So, for example, for the complex

reflection group G11, which is not well-generated, we saw from Example 5.5.2

that the group required one reflection of each order (2, 3 and 4) to gener-

ate the group. However, we could drop the requirement that we consider a

minimal generating set, and then check again if the group needs a reflection

of each order. As an example, can G11 be generated by three reflections of

order 2 and two reflections of order 3 say? The program given in Appendix

D could easily, and quickly, be modified in order to calculate this. However,

instead of checking at most the rank plus one number of reflections we would

check up to the total number of reflections. The obvious problem here would

be the added computational time. Thus, it would seem that to perform such

a check computationally one would require a new program or access to more

computation time.
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GAP Result: Reflections of G5

gap> [ (2,26,30)(4, 6,41)(5,27,32)(7,44,11)(8,34,39)

(10,12,16)(13,19,25)(14,22,46)(15,43,45)(17,36,29)(18,37,48)

(20,40,47)(24,42,28)(31,35,38),

> (2,30,26)(4,41,6)(5,32,27)(7,11,44)(8,39,34)(10,16,12)

(13,25,19)(14,46,22)(15,45,43)(17,29,36)(18,48,37)(20,47,40)

(24,28,42)(31,38,35),

> (1,3,9)(2,4,10)(5,11,25)(6,12,26)(7,13,27)(8,14,28)

(15,29,38)(16,30,41)(17,31,43)(19,32,44)(21,23,33)(22,24,34)

(35,45,36)(39,46,42),

> (1,5,15)(2,6,16)(3,7,17)(4,8,18)(9,19,35)(10,20,34)

(11,21,36)(12,22,37)(13,23,38)(14,24,39)(26,40,46)(28,41,47)

(30,42,48)(32,33,43),

> (1,9,3)(2,10,4)(5,25,11)(6,26,12)(7,27,13)(8,28,14)

(15,38,29)(16,41,30)(17,43,31)(19,44,32)(21,33,23)(22,34,24)

(35,36,45)(39,42,46),

> (1,13,29)(2,47,42)(3,32,31)(5,19,7)(6,20,8)(9,11,45)

(10,39,37)(14,48,26)(15,25,21)(16,40,22)(17,27,23)(18,41,24)

(33,35,44)(36,43,38),

> (1,15,5)(2,16,6)(3,17,7)(4,18,8)(9,35,19)(10,34,20)
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(11,36,21)(12,37,22)(13,38,23)(14,39,24)(26,46,40)(28,47,41)

(30,48,42)(32,43,33),

> (1,17,19)(3,35,5)(4,37,42)(7,9,15)(8,12,48)(10,46,47)

(11,38,33)(13,43,21)(18,22,30)(20,26,28)(23,32,36)(25,27,44)

(29,31,45)(34,40,41),

> (1,19,17)(3,5,35)(4,42,37)(7,15,9)(8,48,12)(10,47,46)

(11,33,38)(13,21,43)(18,30,22)(20,28,26)(23,36,32)(25,44,27)

(29,45,31)(34,41,40),

> (1,25,36)(2,46,37)(3,27,38)(4,47,39)(5,23,29)(6,28,48)

(7,33,31)(9,44,43)(11,32,13)(12,20,14)(15,35,17)(16,34,18)

(19,21,45)(24,30,40),

> (1,27,43)(2,28,18)(3,44,36)(4,20,24)(5,33,45)(6,34,37)

(7,21,29)(8,22,42)(9,25,38)(10,26,41)(12,40,39)(14,30,47)

(16,46,48)(19,23,31),

> (1,29,13)(2,42,47)(3,31,32)(5,7,19)(6,8,20)(9,45,11)

(10,37,39)(14,26,48)(15,21,25)(16,22,40)(17,23,27)(18,24,41)

(33,44,35)(36,38,43),

> (1,32,45)(2,20,22)(3,11,29)(4,12,30)(6,40,42)(8,16,47)

(9,13,31)(10,14,18)(15,27,33)(17,44,21)(23,35,25)(24,37,26)

(28,34,46)(39,48,41),

> (1,36,25)(2,37,46)(3,38,27)(4,39,47)(5,29,23)(6,48,28)

(7,31,33)(9,43,44)(11,13,32)(12,14,20)(15,17,35)(16,18,34)

(19,45,21)(24,40,30),

> (1,43,27)(2,18,28)(3,36,44)(4,24,20)(5,45,33)(6,37,34)

(7,29,21)(8,42,22)(9,38,25)(10,41,26)(12,39,40)(14,47,30)

(16,48,46)(19,31,23),

> (1,45,32)(2,22,20)(3,29,11)(4,30,12)(6,42,40)(8,47,16)

(9,31,13)(10,18,14)(15,33,27)(17,21,44)(23,25,35)(24,26,37)

(28,46,34)(39,41,48) ]



Appendix B

GAP Code: reforder

gap> reforder:=function(a)

> local m,n,o,p,i;

> m:=[];

> n:=[];

> o:=[];

> p:=[];

> for i in a do

> if i^2=() then Add(m,i);fi;

> if i^3=() then Add(n,i);fi;

> if i^4=() and i^2<>() then Add(o,i);fi;

> if i^5=() then Add(p,i);fi;

> od;

> Print("\n","The reflections in ",ReflectionName," are ");

> if Length(m)>0 then Print("2^",Length(m),", ");fi;

> if Length(n)>0 then Print("3^",Length(n),", ");fi;

> if Length(o)>0 then Print("4^",Length(o),", ");fi;

> if Length(p)>0 then Print("5^",Length(p),", ");fi;

> Print("\n");
> end;
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Appendix C

GAP Code: wellgen

gap> wellgen:=function(W,a)

> local l,b,i,c;

> l:=Rank(W);

> b:=Combinations(a,l);

> c:=[];

> for i in [1..Length(b)] do

> if W=Subgroup(W,b[i]) then Add(c,i);fi;

> od;

> if Size(c)<>0 then Print("\n",ReflectionName(W)," is

well-generated.","\n");
> else Print("\n",ReflectionName(W)," is not well-generated.

","\n");
> fi;

> end;
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GAP Code: requiredorders

gap> requiredorders:=function(W,a,l)

> local m,n,o,p,i,b,c,d,e,f;

> m:=[];

> n:=[];

> o:=[];

> p:=[];

> for i in a do

> if i^2=() then Add(m,i);fi;

> if i^3=() then Add(n,i);fi;

> if i^4=() and i^2<>() then Add(o,i);fi;

> if i^5=() then Add(p,i);fi;

> od;

>

> if Length(m)>0 then

>

> b:=Combinations(m,l);

> c:=[];

> for i in [1..Length(b)] do

> if W=Subgroup(W,b[i]) then Add(c,i);fi;

> od;

> if Size(c)<>0 then Print("\n",ReflectionName(W)," can be

generated solely by reflections of order 2","\n");

98



APPENDIX D. GAP CODE: REQUIREDORDERS 99

> else Print("\n",ReflectionName(W)," cannot be generated

solely by reflections of order 2","\n");
> fi;

>

> fi;

>

> if Length(n)>0 then

>

> b:=Combinations(n,l);

> c:=[];

> for i in [1..Length(b)] do

> if W=Subgroup(W,b[i]) then Add(c,i);fi;

> od;

> if Size(c)<>0 then Print("\n",ReflectionName(W)," can be

generated solely by reflections of order 3","\n");
> else Print("\n",ReflectionName(W)," cannot be generated

solely by reflections of order 3","\n");
> fi;

>

> fi;

>

> if Length(o)>0 then

>

> b:=Combinations(o,l);

> c:=[];

> for i in [1..Length(b)] do

> if W=Subgroup(W,b[i]) then Add(c,i);fi;

> od;

> if Size(c)<>0 then Print("\n",ReflectionName(W)," can be

generated solely by reflections of order 4","\n");
> else Print("\n",ReflectionName(W)," cannot be generated

solely by reflections of order 4","\n");
> fi;

>

> fi;

>

> if Length(p)>0 then

>



APPENDIX D. GAP CODE: REQUIREDORDERS 100

> b:=Combinations(p,l);

> c:=[];

> for i in [1..Length(b)] do

> if W=Subgroup(W,b[i]) then Add(c,i);fi;

> od;

> if Size(c)<>0 then Print("\n",ReflectionName(W)," can be

generated solely by reflections of order 5","\n");
> else Print("\n",ReflectionName(W)," cannot be generated

solely by reflections of order 5","\n");
> fi;

>

> fi;

>

> if Length(m)>0 and Length(n)>0 and Length(o)>0 then

>

> d:=[];

> for i in [1..Length(m)] do

> Add(d,m[i]);

> od;

> for i in [1..Length(n)] do

> Add(d,n[i]);

> od;

> b:=Combinations(d,l);

> c:=[];

> for i in [1..Length(b)] do

> if W=Subgroup(W,b[i]) then Add(c,i);fi;

> od;

> if Size(c)<>0 then Print("\n",ReflectionName(W)," can be

generated by reflections of orders 2 and 3","\n");
> else Print("\n",ReflectionName(W)," cannot be generated by

reflections of orders 2 and 3","\n");
> fi;

>

> e:=[];

> for i in [1..Length(m)] do

> Add(e,m[i]);

> od;

> for i in [1..Length(o)] do
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> Add(e,o[i]);

> od;

> b:=Combinations(e,l);

> c:=[];

> for i in [1..Length(b)] do

> if W=Subgroup(W,b[i]) then Add(c,i);fi;

> od;

> if Size(c)<>0 then Print("\n",ReflectionName(W)," can be

generated by reflections of orders 2 and 4","\n");
> else Print("\n",ReflectionName(W)," cannot be generated by

reflections of orders 2 and 4","\n");
> fi;

>

> f:=[];

> for i in [1..Length(n)] do

> Add(f,n[i]);

> od;

> for i in [1..Length(o)] do

> Add(f,o[i]);

> od;

> b:=Combinations(f,l);

> c:=[];

> for i in [1..Length(b)] do

> if W=Subgroup(W,b[i]) then Add(c,i);fi;

> od;

> if Size(c)<>0 then Print("\n",ReflectionName(W)," can be

generated by reflections of orders 3 and 4","\n");
> else Print("\n",ReflectionName(W)," cannot be generated by

reflections of orders 3 and 4","\n");
> fi;

>

> fi;

>

> if Length(m)>0 and Length(n)>0 and Length(p)>0 then

>

> d:=[];

> for i in [1..Length(m)] do

> Add(d,m[i]);
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> od;

> for i in [1..Length(n)] do

> Add(d,n[i]);

> od;

> b:=Combinations(d,l);

> c:=[];

> for i in [1..Length(b)] do

> if W=Subgroup(W,b[i]) then Add(c,i);fi;

> od;

> if Size(c)<>0 then Print("\n",ReflectionName(W)," can be

generated by reflections of orders 2 and 3","\n");
> else Print("\n",ReflectionName(W)," cannot be generated by

reflections of orders 2 and 3","\n");
> fi;

>

> e:=[];

> for i in [1..Length(m)] do

> Add(e,m[i]);

> od;

> for i in [1..Length(p)] do

> Add(e,p[i]);

> od;

> b:=Combinations(e,l);

> c:=[];

> for i in [1..Length(b)] do

> if W=Subgroup(W,b[i]) then Add(c,i);fi;

> od;

> if Size(c)<>0 then Print("\n",ReflectionName(W)," can be

generated by reflections of orders 2 and 5","\n");
> else Print("\n",ReflectionName(W)," cannot be generated by

reflections of orders 2 and 5","\n");
> fi;

>

> f:=[];

> for i in [1..Length(n)] do

> Add(f,n[i]);

> od;

> for i in [1..Length(p)] do
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> Add(f,p[i]);

> od;

> b:=Combinations(f,l);

> c:=[];

> for i in [1..Length(b)] do

> if W=Subgroup(W,b[i]) then Add(c,i);fi;

> od;

> if Size(c)<>0 then Print("\n",ReflectionName(W)," can be

generated by reflections of orders 3 and 5","\n");
> else Print("\n",ReflectionName(W)," cannot be generated by

reflections of orders 3 and 5","\n");
> fi;

>

> fi;

>

> if Length(n)>0 and Length(o)>0 and Length(p)>0 then

>

> d:=[];

> for i in [1..Length(n)] do

> Add(d,n[i]);

> od;

> for i in [1..Length(o)] do

> Add(d,o[i]);

> od;

> b:=Combinations(d,l);

> c:=[];

> for i in [1..Length(b)] do

> if W=Subgroup(W,b[i]) then Add(c,i);fi;

> od;

> if Size(c)<>0 then Print("\n",ReflectionName(W)," can be

generated by reflections of orders 3 and 4","\n");
> else Print("\n",ReflectionName(W)," cannot be generated by

reflections of orders 3 and 4","\n");
> fi;

>

> e:=[];

> for i in [1..Length(n)] do

> Add(e,n[i]);
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> od;

> for i in [1..Length(p)] do

> Add(e,p[i]);

> od;

> b:=Combinations(e,l);

> c:=[];

> for i in [1..Length(b)] do

> if W=Subgroup(W,b[i]) then Add(c,i);fi;

> od;

> if Size(c)<>0 then Print("\n",ReflectionName(W)," can be

generated by reflections of orders 3 and 5","\n");
> else Print("\n",ReflectionName(W)," cannot be generated by

reflections of orders 3 and 5","\n");
> fi;

>

> f:=[];

> for i in [1..Length(o)] do

> Add(f,o[i]);

> od;

> for i in [1..Length(p)] do

> Add(f,p[i]);

> od;

> b:=Combinations(f,l);

> c:=[];

> for i in [1..Length(b)] do

> if W=Subgroup(W,b[i]) then Add(c,i);fi;

> od;

> if Size(c)<>0 then Print("\n",ReflectionName(W)," can be

generated by reflections of orders 4 and 5","\n");
> else Print("\n",ReflectionName(W)," cannot be generated by

reflections of orders 4 and 5","\n");
> fi;

>

> fi;

> end;
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