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Introduction

The aim of this talk is to discuss the classification of complex
reflection groups. I will not discuss real reflection groups here, but
if you are interested you should read ‘Reflection Groups and
Coexter Groups’ by Humphreys or the lesser well know, but very
well written, ‘Reflection Groups and Invariant Theory’ by Kane.

Anyone who has studied finite reflection groups (also known as
Coxeter groups) will know they are classified using root systems
(like the semisimple Lie algebras). However there is no universally
accepted root system for complex reflection groups. As such the
classification is quite different. First we need to extend the idea of
a reflection to a complex reflection.
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Complex Reflections

Throughout we let V be a finite dimensional vector space over C.

Definition

A reflection on V is a diagonalizable linear isomorphism
s : V → V of finite order, not the identity, but fixes pointwise a
hyperplane H ⊆ V .

Definition

A group G ≤ GL(V ) is called a reflection group if G is generated
by reflections.
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Complex Reflections

A pseudo-reflection is similar to on the previous slide, but we do
not restrict V to be over C.

For the classification of complex reflection groups we only need to
consider irreducible complex reflection groups. In all that follows
we always let G be a complex reflection group.

Definition

A complex reflection group G ≤ GL(V ) is called reducible if the
vector space V is a reducible, G -module, i.e. it has notrivial
G -submodules. If not G is said to be an irreducible complex
reflection group.
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Reflection Root

Whilst there is no universal theory of root systems, we do use the
idea of a root.

Definition

A (unitary) root of a reflection is an eigenvector of length 1
corresponding to the unique nontrivial eigenvalue of the reflection.
We denote a reflection s ∈ G with root α as αs .

Let Ω be the set of all roots from a reflection group:

Ω = {αs |α a (unitary) root corresponding to the reflection s ∈ G} .
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Classification

The complex reflection groups were first classified by Shepherd and
Todd in 1954 and reclassified by Cohen in 1976.

There are 37 finite irreducible complex reflection groups. Three
infinite families

⋂
(Sym(n), Z/mZ, G (m, p, n)

)
and 34 exceptional

groups (G4, . . . ,G37).
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3 Cases

We define the rank of a complex reflection group to be the
dimension of the complex vector space which the group acts on.
The rank 1 complex reflection groups are just the cyclic groups,
and so we consider rank ≥ 2. These we split into three cases:

1 imprimitive complex reflection groups
(
G (m, p, n)

)
2 primitive complex reflection groups of rank 2

(
19 exceptional

)
3 primitive complex reflection groups of rank ≥ 3

(
15

exceptional and Sym(n)
)

In this talk we will just go through the proof of case 1 and a brief
idea of how cases 2 and 3 work. Check Cohen for the complete
proof.
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Imprimitive Groups

Definition

A group G ≤ GL(V ) is called imprimitive if there exists a
decomposition of V =

⊕k
i=1 Vi for k > 2 and the (Vi )1≤i≤k are

nontrivial proper linear subspaces of V and are permuted
transitively by G . We call the (Vi )1≤i≤k a system of
imprimitivity.
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Proposition

The following proposition is needed for the proof of the
classification of the imprimitive complex reflection groups:

Proposition

Let G be an irreducible imprimitive complex reflection group in V ,
where dim V = n and let (Vi )1≤i≤k be a system of imprimitivity
for G then:

1 dim Vi = 1 for i = 1, . . . , k
2 Let s ∈ G be an arbitrary reflection

1 sVi = Vi for 1 ≤ i ≤ n, or
2 there exists i 6= j , 1 ≤ i , j ≤ n such that any root αs of s is

contained in Vi

⊕
Vj where sVi = Vj and sVk = Vk for all

k 6= i , j and s2 = 1
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Proof

Proof of Proposition

1 Fix i such that dim Vi > 1. Since G is irreducible ∃j 6= i and a
reflection s such that sVi = Vj . Thus dim(Vj ∩ Vi ) > 0
contradicting Vi ∩ Vj = {0} (since Vi are a system of
imprimitivity). So dim Vi = 1 for i = 1, . . . , k .

2 Let s ∈ G be a reflection with root αs , first assume
〈αs ,Vi 〉 6= 0

⋂
〈·, ·〉 an inner product over C

]
for i = 1, 2. Let

ξ be a nontrivial eigenvalue such that 〈αs ,Vi 〉 6= 0 and
αs 6∈ Vi .

Since the group is imprimitive, sV 1 = V2. Now consider
0 6= xi ∈ Vi (again i = 1, 2) where sx1 = x2 then
∃j ∈ {1, . . . , n} such that s2x1 ∈ Vj and thus
s2x1 ∈ (Cαs + Cx) ∩ Vj = (V1 ⊕ V2) ∩ Vj so j = 1 or j = 2.
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Proof (continued)

Proof of Proposition (continued...)

2 Since αs ∈ V1 we know s2x1 = x1 and ξ2 = 1⇒ ξ = −1 and
thus s2 = 1. Then as αs is a scalar multiple of (x1 − x2) we
get αs ∈ V1 ⊕ V2). Now consider 〈αs ,Vi 〉 = 0 for i ≥ 3 and
so ∃j ≥ 3 such that sVi = Vj . Thus
αs ∈ [(Vi ⊕ Vj) ∩ (V1 ⊕ V2)] = {0} which is impossible. Thus
〈αs ,Vi 〉 = 0 for i ≥ 3 and so sVk = Vk for k ≥ 3. �
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Infinite Family

Definition

For any m, p, n ≥ 1 such that p|m define G(m, p, n) to be the
group of n × n monomial matrices with non-zero entries ai such
that the ai are mth roots of unity and

∏n
i=1 a is an m/pth root of

unity.

Or equivalently, G (m, p, n) = A(m, p, n) o πn where A(m, p, n) are
diagonal matrices whose elements are mth roots of unity and for
A ∈ A(m, p, n), (det A)

m
p = 1 and πn are n × n permutation

matrices.

Remark

Braué, Malle and Rouquier use G (de, e, r).
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Examples

Examples

G (1, 1, n) = W (An−1)

G (2, 1, n) = W (Bn)

G (2, 2, n) = W (D2n)

G (m, p, 1) = G (m/p, 1, 1) = Z/(m/p)Z
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Irreducibility Lemma

Lemma

G (m, p, n) is irreducible if and only if (m, p, n) 6= (2, 2, 2) and
m > 1.

Proof

“⇒” Assume G = G (m, p, n) is irreducible and suppose G fixes
(leaves invariant) a nontrivial subspace W ⊂ V . Since W is
πn-invariant W = C(e1 + · · ·+ en) up to switching between W
and W⊥. Since A(m, p, n) stabilizes C(e1 + · · ·+ en) all diagonal
elements of A(m, p, n) must be equal, i.e. we must have
(m, p, n) = (1, 1, n) or (2, 2, 2).

“⇐” (m, p, n) = (1, 1, n) (Sym(n)) or (2, 2, 2) (Klein four-group)
are reducible. �
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Conjugate Theorem

Theorem

If dim V = n ≥ 2 and let G ≤ GL(V ) be an irreducible complex
reflection group then G is conjugate to G (m, p, n) for m, p ∈ N
and p|m.

Proof

Let G be as above, then we can find an orthonormal basis
{ε1, . . . , εn} of V such that Vi = Cεi for 1 ≤ i ≤ n form a system
of imprimitivity for G . Without changing the conjugacy class of G
we see this basis equals {e1, . . . , en}. By our previous proposition
πn ≤ G .

The cyclic group generated by reflections which fix a hyperplane
(without loss of generality He1) of V pointwise, and let the order
of this group be q. Then A(q, l , n) ≤ G .
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Conjugate Theorem (continued)

Proof (continued...)

Now we consider the group A(q, l , n) o πn. The only reflections of
G which are not in it are s ′ ∈ G such that s ′ei = φej with i 6= j
and s ′ek = ek for all k 6= i , j . Take i = 1 and j = 2 and let
s = s2 ∈ G be a reflection such that se1 = e2. Then,

(ss ′)e1 = φe1 and (ss ′)e2 = φ−1e2.

So φ is a root of unity. Now for another reflection t ∈ G such that
tV1 = V2, let m be the maximum order of elements st ∈ G , thus
A(m,m, n) ≤ G .

Now let pm/q so p|m and A(m, p, n) = 〈A(q, l , n),A(m,m, n)〉. So
G (m, p, n) := A(m, p, n)o ≤ G . But all reflections of G are
contained in A(m, p, n) o πn so G (m, p, n) = G . �
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Fact

Due to time constrains this results is just stated as a fact:

Fact

If G = G (m, p, n) is irreducible then G has a unique system of
imprimitivity as long as:

G (m, p, n) 6∈
{

(2, 1, 2), (4, 4, 2), (3, 3, 3), (2, 2, 4)
}

.

This fact along with the other theorems completes the
classification of imprimitive complex reflection groups.
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Primitive Complex Reflection Groups of Rank 2

Part 2 of the classification of complex reflection groups looks at
the primitive groups of rank 2. We require a group G generated by
reflections such that

G ≤ GL2(C) = C× SL2(C).

Recall the conjugacy classes of finite subgroups of GL2(C) are
Z/mZ, D2m, 〈x , y | x2 = y3 = (xy)k = 1〉 for k = 3, 4, 5
(tetrahedral, octahedral and icosahedral). Then for K ,H ≤ SL2(C)
such that

H / K and K/H = Z/mZ.
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Primitive Complex Reflection Groups of Rank 2

We can get all subgroups of GL2(C) by defining a group G such
that G ≤ Z/kmZ× K ≤ GL2(C) for k ≥ 2 and where Z/kZ / G and
K = G/(Z/kZ).

when K is tetrahedral we get 4 primitive complex reflection
groups

when K is octahedral we get 8 primitive complex reflection
groups

when K is icosahedral we get 7 primitive complex reflection
groups

This gives 19 exceptional complex reflection groups.
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Primitive Complex Reflection Groups of Rank 3

The primitive complex reflection groups of rank 3 gives rise to 15
exceptional groups and Sym(n). The classification requires the use
of root graphs which is an extension of a Coxeter graph. These
were first introduced by Cohen.
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Complex Reflection Group Generation

Theorem

All complex reflection groups can be generated by the rank or rank
+1 number of reflections.

Definition

A complex reflection group is well generated if it is generated by
the rank number of reflections.

Example

Sym(n) is well generated

G (m, p, n) is well generated if and only if p = 1 or p = m

Z/mZ is well generated

Gr for
r ∈ {4, 5, 6, 8, 9, 10, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 27,
28, 29, 30, 32, 33, 34, 35, 36, 37} is well generated
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