Maths on a Mug #16

Posted on

#mathsonamug pic.twitter.com/Rd0IAC9YHw — Sean Elvidge (@seanelvidge) November 17, 2016 Perhaps a “simple” #mathsonthemug this time. Simple, but very important. This is Bayes’ theorem: \[P(A|B) = \frac{P(B|A)P(A)}{P(B)}.\] This relates the probability of observing \(A\) given that \(B\) is true where \(A\) and \(B\) are events, we also require that the probability of \(B\) does not equal
Read more

Maths on a Mug #15

Posted on

#mathsonamug #maths #newpoundcoin pic.twitter.com/lMQm5uOUyl — Sean Elvidge (@seanelvidge) November 4, 2016 Keeping with the theme of yesterdays blog post about the new pound coin and shapes of constant diameter here is a nice little result known as Barbier’s theorem. Simply, it says that for any curve of constant diameter (width; \(w\)) the perimeter of that shape
Read more